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Abstrakt

Modelovanie tiažového poľa pomocou sférických radiálnych bázových funkcií

Dizertačná práca sa zaoberá určovaním globálneho a regionálneho tiažového poľa pomocou

sférických radiálnych bázových funkcií. Na výpočet sú použité dva typy dát: kinematická dráha

družice GOCE a terestrické gravimetrické merania. Je ukázané, že globálne GOCE modely za-

ložené na Shannonovej radiálnej bázovej funkcii vedú prakticky k rovnako kvalitným výsledkom

ako s použitím tradičných sférických harmonických funkcií. V regionálnych experimentoch bolo

dosiahnuté zlepšenie približne o 10 % v spektrálnom pásme harmonických stupňov 70 – 130.

V terestrickej aplikácii je vypočítaný model tiažového poľa v oblasti územia Slovenskej republiky

vo veľmi vysokom priestorovom rozlíšení. Model je založený na kombinácii sférických harmo-

nických funkcií (do stupňa 2159), sférických radiálnych bázových funkcií (do stupňa 21 600)

a metóde reziduálneho terénneho modelu (2′′ priestorové rozlíšenie). Kombinovaný model je

testovaný pomocou GNSS/nivelačných bodov, nezávislých terestrických gravimetrických mera-

ní, zvislicových odchýlok a vertikálnych gradientov tiažového zrýchlenia, pričom boli dosiahnuté

stredné kvadratické chyby 2.7 cm, 0.53 mGal, 0.39′′ a 279 E.
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Preface

Accurate knowledge of the Earth’s gravity field is essential in many fields of geosciences such as

climatology, geophysics, oceanography or physical geodesy. And it is the last-mentioned one,

physical geodesy, whose one of the main objectives is to provide state-of-the-art gravity field

models. In physical geodesy, gravity field information is necessary to obtain the geoid, which

is a specific equipotential surface of the Earth’s gravity field best coinciding with the mean sea

level. Precise knowledge of the geoid in combination with the GNSS technology significantly

simplifies, for instance, the determination of physical heights. This thesis deals with global

and regional gravity field determination from two different data types: the kinematic orbit of

the GOCE satellite and terrestrial gravity data. To parameterize the gravity field, we utilize

band-limited spherical radial basis functions (SRBFs), which enable both global and regional

gravity field modelling in a unified manner.

The core of the thesis (Sects. 3 and 4) is a compilation of two journal papers. The satellite

application was published in Bucha et al. (2015), while the terrestrial application was submitted

(02 May 2016) to Geophysical Journal International (Bucha et al., 2016).

1 Prior research on spherical radial basis functions

Spherical radial basis functions have long been recognized as a useful mathematical tool to

model the Earth’s external gravity field. The studies on gravity field modelling via SRBFs go

at least back to the late 1960s (e.g., Krarup, 1969). In the author’s opinion, the use of SRBFs

is attractive mainly because of the following properties:

1. data of different origin can directly be combined altogether (e.g., terrestrial and satellite

data);

2. SRBFs can be harmonically upward continued and thus represent the external gravity

field as well;

3. SRBFs enable both global and regional gravity field modelling;

4. input data do not necessarily have to be regularly spaced or refer to a regular surface

such as the sphere;

5. the use of SRBFs on a regional scale substantially reduces the total number of coefficients

to be determined when compared with the traditional spherical harmonics.

The methods based on SRBFs can be classified with respect to the kernel function.

1. Point-mass kernel (e.g., Claessens et al., 2001) – In this method, a finite number of point

masses is located beneath the Earth surface in such a way that the gravity field they

generate according to Newton’s law of gravitation fits best (usually in the least-square

sense) the input data, e.g., gravity anomalies.

2. Radial multipoles (e.g., Marchenko, 1998) – The method employs radial derivatives of the

point-mass kernel.
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3. Least-squares collocation (e.g., Krarup, 1969) – In the least-squares collocation, the auto-

covariance function of the data, which describes stochastic behaviour of the function under

consideration at two points, is used as the kernel function. The appropriate selection of

the auto-covariance function is probably one of the most difficult steps of this method.

4. Spherical wavelets (e.g., Freeden and Schneider, 1998) – Spherical wavelets enable a de-

composition of a signal (e.g., gravity anomalies, deflections of the vertical, etc.) into

different spectral bands similarly as in the spherical harmonic case.

Another examples of SRBFs are Dirac approach (Bjerhammar, 1976), Poisson wavelet (e.g.,

Holschneider et al., 2003) or spherical splines (e.g., Alfeld et al., 1996). For further references,

the reader might want to consult, among many others, Klees et al. (2008) and the references

therein.

Of this somewhat wide variety of SRBF-based approaches, the one we employ benefits from

the theory of spherical wavelets to a large extent. Particularly, we use band-limited SRBFs,

whose the main advantage (in this author’s opinion) is the possibility to decompose a signal

into different frequency bands. This technique, also called the multi-resolution analysis, is not

usually applied (or applicable) in the rest of the SRBF-based approaches. Working with the

same signal, say with gravity anomalies, in various spectral bands is of particular importance

both in geodesy and geophysics. In geodesy, one frequently needs to combine various data types,

some of which may be accurate only within a specific spectral band (e.g., the gravitational

gradients measured by the GOCE satellite), or needs to remove certain wavelengths of the

gravity field, for instance, when applying the remove-compute-restore method. In addition

to that, the spectral decomposition offers further insight into the performance of the derived

model, e.g., by its validation against the same spectral band in spherical harmonic models. In

geophysics, the removal of the long-wavelength features of the gravity field helps to, e.g., detect

local density inhomogeneities. These useful properties of band-limited SRBFs motivated us to

choose this particular SRBF-based technique.

2 Thesis objectives

The main objective of the thesis is to develop gravity field models parameterized in spherical

radial basis functions from two data types: the kinematic orbit of the GOCE satellite and

terrestrial gravity data.

Specific objectives:

1. Summary of the prior research on regional gravity field modelling in terms of spherical

radial basis functions.

2. Development and evaluation of global and regional gravity field models from the GOCE

kinematic orbit.

• Inversion of the GOCE kinematic orbit into a gravity field model using the acceler-

ation approach.

• Development of global GOCE-only gravity field models and their evaluation against

spherical harmonic models.
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• Stabilization of zonal and near-zonal spherical harmonic coefficients of global GOCE-

only gravity field models.

• Application of the acceleration approach on a regional scale and development of

regional gravity field models satisfying the GOCE-only strategy.

• Mutual comparison of the global and regional GOCE-only gravity field solutions

based on spherical radial basis functions.

3. Development and evaluation of a high-resolution regional gravity field model over the

Slovak Republic from terrestrial gravity data.

• Description of a combined approach to determine the regional gravity field via spher-

ical harmonics, spherical radial basis functions and the residual terrain model tech-

nique.

• To propose a solution to the harmonic reduction problem related to residual terrain

modelling.

• Comparison of the tesseroid- and polyhedron-based gravity forward modelling tech-

niques in terms of the residual terrain model within the innermost zone.

• Validation of the combined regional gravity field model against independent GNSS/le-

velling data, surface gravity data, deflections of the vertical and vertical gravity

gradients.

• Derivation of the second-order derivatives of spherical radial basis functions in the

local north-oriented reference frame and solving the singularity-related issues.

4. To develop a software to spherical harmonic synthesis up to ultra-high degrees and orders.

3 Global and regional gravity field determination from

GOCE kinematic orbit by means of spherical radial

basis functions

3.1 Introduction

Kinematic orbits of low Earth orbiters proved to be a useful source of information about the

long-wavelength component of the geopotential. Regarding the current and the past satellite

missions, the GOCE satellite seems to be an appropriate candidate to invert its kinematic orbit

into a gravity field model. The reason is twofold. First, the satellite was orbiting the Earth

at an extremely low altitude (∼250 km above the Earth surface), thus being more sensitive

to the fine structures of the gravity field. Second, it was equipped with a geodetic-quality

GPS receiver enabling a precise satellite-to-satellite tracking in the high-low mode (SST-hl).

A typical feature of the GOCE mission is the Sun-synchronous orbit inclined at 96.7◦. Two

spherical caps of the radius ∼7◦ around the poles are therefore uncovered by the satellite ground

tracks.

Gravity field models from satellite data are commonly produced on a global scale by means

of spherical harmonics. Previous studies showed, however, that additional information may

be extracted from these data when the gravity field is modelled on a regional scale (e.g.,

3



Eicker et al., 2014). Here we parameterize the gravity field by means of spatially localized basis

functions, namely by spherical radial basis functions (SRBFs). A spherical radial basis function

is a function on a reference sphere depending only on the spherical distance between two points

on this sphere.

The aim of the present study is to deliver global and regional gravity field models from real

GOCE kinematic orbit via the acceleration approach modified by Bezděk et al. (2014). We

present two strategies of how to mitigate the impact of the polar gap problem, a global one

and a regional one. In the global strategy, we stabilize the estimation of high-degree models

(in our case of degree 130) by introducing prior information. In the second strategy, we apply

the acceleration approach on a regional scale in a remove-compute-restore fashion, utilizing the

long-wavelength geopotential from our global GOCE-based models.

3.2 Representation of the gravity field in terms of spherical radial

basis functions

A spherical radial basis function defined on a reference sphere ΩR is rotationally symmetric

around the axis represented by the direction of the unit vector ri/|ri|, ri ∈ ΩR. Here, ri is

a nodal point at which the radial basis function is located and R is the radius of the sphere.

Satellite data are taken at the exterior of the reference sphere ΩR, which we shall denote

as Ωext
R . The harmonic upward continuation of SRBFs into observational points is therefore

of fundamental importance. It ensures that we can establish a relation between SRBFs and

a gravity field quantity observed at a point r ∈ Ωext
R , Ωext

R = ΩR ∪Ωext
R . In this section, the

gravity field modelling is understood in the global sense. The regional gravity field modelling

will naturally follow from the global approach with only minor modifications.

The gravitational potential V at a point r ∈ Ωext
R expanded in a series of band-limited SRBFs

reads (e.g., Freeden and Schneider, 1998)

V (r) =
I∑
i=1

aiΦ (r, ri) , (1)

where Φ(r, ri) is a band-limited SRBF located at the nodal point ri ∈ ΩR, ai is the expansion

coefficient of the ith SRBF to be determined and I is the total number of SRBFs. The band-

limited SRBF is given as (Freeden and Schneider, 1998)

Φ (r, ri) =
nmax∑
n=nmin

2n+ 1

4π R2
φn

(
R2

|r| |ri|

)(n+1)

Pn

(
r

|r|
· ri
|ri|

)
, (2)

where Pn is the (unnormalized) Legendre polynomial of degree n, φn are non-negative shape

coefficients defining the spatial and the spectral properties of the SRBF and, finally, nmin and

nmax are minimum and maximum degrees of the expansion, respectively. A SRBF is band-

limited if the shape coefficients φn are zero for each degree beyond the maximum degree nmax.

If the shape coefficients φn do not vanish for infinitely many degrees, the spherical radial basis

function is referred to as non-band-limited.

We use two band-limited SRBFs shown in Fig. 1:
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Figure 1: Spatial and spectral representations of the Shannon and Kaula’s SRBFs in the spectral bandwidth

n = 70, . . . , 130. In Section 3.5.3, these radial basis functions are used for regional gravity field determination.

The slightly smaller oscillations of Kaula’s SRBF in the spatial domain are caused by the gradual attenuation

of the shape coefficients φn prescribed by Kaula’s rule of thumb. For a better mutual comparison in the spatial

domain, the spherical radial basis functions are normalized by their values at the spherical distance of 0◦.

(i) The Shannon SRBF defined by the shape coefficients φn = 1 for all

n = nmin, . . . , nmax. The Shannon SRBF is the reproducing kernel of the space spanned

by spherical harmonics of degrees nmin, . . . , nmax and all corresponding orders (Freeden

and Schneider, 1998).

(ii) SRBF based on Kaula’s rule of thumb for the degree variances of the Earth’s gravitational

potential (Kaula, 1966), here referred to as Kaula’s SRBF. Unlike the Shannon-based

models, the solutions based on Kaula’s SRBF are, to some extent, forced to follow the

degree variances prescribed by Kaula’s rule. In Section 3.5, we therefore investigate the

performance of both SRBFs.

3.3 Acceleration approach

The acceleration approach, which is based on Newton’s law of motion, links the unknown

expansion coefficients to the accelerations acting on the satellite. The transition from kinematic

orbit to accelerations domain is performed in an inertial reference frame by applying a second-

order derivative filter to the kinematic orbit. The satellite is not, however, subject solely to the

gravitational force generated by the Earth. In reality, its motion is also affected by perturbing

forces that need to be properly accounted for. After removing all the perturbing accelerations

that can be measured on-board (non-gravitational accelerations) or modelled (direct lunisolar

perturbations, accelerations due to solid Earth and ocean tides, and correction due to general

relativity), the resulting accelerations acting on the spacecraft are identified with the ones

caused by the geopotential.

The gravitational vector gg is obtained by applying the gradient operator to the series

expansion in Eq. (1),

gg(r) = ∇V (r) =
I∑
i=1

ai∇Φ (r, ri) . (3)
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After introducing random observation errors into Eq. (3), the following linear Gauss-Markov

model can be established

y = Ax + e , E{e} = 0 , D{y} = σ2P−1 , (4)

where y is the N × 1 observation vector, A is the design matrix of dimensions N × I, x is the

I × 1 vector of unknown expansion coefficients, e is the N × 1 vector of stochastic observation

errors, σ2 is the (unknown) variance factor, P is the N ×N weight matrix of the observation

vector y and, finally, E and D denote the expectation and the dispersion operators, respectively.

The design matrix in the linear model (4) is ill-conditioned and therefore some stabilization

technique is necessary to obtain a unique and numerical stable solution. Following the variance

components estimation approach (Koch and Kusche, 2002), a unique least-squares solution

of (4) reads

x̂ =

(
1

σ2
A>A +

1

σ2
µ

Pµ

)−1 (
1

σ2
A> y +

1

σ2
µ

Pµ µ

)
=
(
A>A + λPµ

)−1 (
A> y + λPµ µ

) (5)

with Pµ being the weight matrix of the prior information µ, σ2
µ is the variance factor of Pµ

and λ = σ2/σ2
µ.

3.3.1 Regionally tailored regularization in terms of SRBFs

In Eq. (5), we can easily account for the regionally varying gravity field by splitting up the

weight matrix Pµ into several matrices Pµ,j, j = 1, . . . , J (Eicker et al., 2014). First, the area

in which the expansion coefficients ai are to be estimated is divided into J areas. Subsequently,

the corresponding diagonal elements of the weight matrix Pµ,j are set to 1 if the points ri belong

to the jth area. The rest of the elements of the weight matrix Pµ,j is set to zero (the diagonal

as well as the off-diagonal ones). Clearly,
∑J

j=1Pµ,j = I. Eq. (5) can thus be rewritten as

x̂ =

(
A>A +

J∑
j=1

λj Pµ,j

)−1 (
A> y +

J∑
j=1

λj Pµ,j µ

)
(6)

with λj = σ2/σ2
µ,j.

3.4 Data

Global and regional gravity field models to be presented in Section 3.5 are based on the GOCE

kinematic orbit covering the period 01 November 2009 to 11 January 2010. Table 1 specifies

the data and the background models that we employ. Furthermore, we assume that the non-

gravitational accelerations in the along-track direction are to a large extent compensated by the

drag-free control system. The non-gravitational accelerations in the cross-track and the radial

directions are modelled, see Bezděk et al. (2014). For the validation of our results, we made

use of the EIGEN-6S model (Förste et al., 2011). This model is expected to be superior to

our models at least by one order of magnitude; therefore, we use it as a high-quality reference

model.
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Table 1: Data and background models.

Kinematic orbits SST PSO 2

Rotation between the inertial and the terrestrial reference frames IERS Conventions 2010

Rotation between the inertial and the satellite-fixed reference frames EGG IAQ 2c

Solid Earth tides anelastic Earth

Ocean tides FES 2004

Lunar and solar ephemerides JPL DE405

Neutral thermospheric density DTM-2000

Relativistic correction

3.5 Results

3.5.1 Global solutions free from prior information

We show in Fig. 2 a comparison between our SRBF solution complete to degree 130 and the

models by Baur et al. (2014), kindly provided by Oliver Baur. These models are based on

the same GOCE SST-hl data as we used, but rely on the spherical harmonic parametrization.

The presence of the “zig-zag pattern” in the difference degree amplitudes, which is typical for

GOCE-only models, is the strongest in our SRBF solution. In the spectral band 2–60, the even

degrees are determined most weakly in the SRBF solution, while its odd degrees outperform

0 20 40 60 80 100 120
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G
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SRBF
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AAA
EBA

Figure 2: Difference degree amplitudes and modified difference degree amplitudes of the SRBF model to de-

gree 130 and of the spherical harmonic models derived by: the celestial mechanics approach (CMA), the short-arc

approach (SAA), the point-wise acceleration approach (PAA), the averaged acceleration approach (AAA) and

the energy balance approach (EBA). Thick lines – all spherical harmonic coefficients considered; thin lines –

zonal and near-zonal spherical harmonic coefficients excluded. Reference model: EIGEN-6S.
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Figure 3: Difference degree amplitudes (thick lines) and signal amplitudes (thin lines) of the SRBF solutions

complete to degree 130 with various prior information. In the bottom part of the spectrum, the red and the

purple curves virtually overlap each other. Similarly, the red and the green curves closely follow each other

for degrees beyond ∼80. The bottom right plot shows a detail on the spectral band 90–130. Reference model:

EIGEN-6S.

the rest of the models nearly over all the frequencies. We assign this behaviour to the particular

modification of the acceleration approach, and not to the parametrization by SRBFs. Next,

we also shown in Fig. 2 modified difference degree amplitudes (the thin lines) excluding the

zonal and near-zonal coefficients according to the rule of thumb proposed by Sneeuw and van

Gelderen (1997). The modified version better reveals the quality of the coefficients that are

almost unaffected by the polar gap problem. It can be seen that the modified difference degree

amplitudes imply that our SRBF approach is able to deliver global gravity field models of

comparable quality with respect to the rest of the spherical harmonic approaches.

3.5.2 Global solutions based on prior information pre-computed from GOCE

In this section, we attempt to prevent the deterioration of zonal and near-zonal spherical

harmonic coefficients of GOCE-only solutions. To this end, we derive the prior information µ

from our global GOCE-only model complete to degree 75. Thanks to the low resolution of this

model, its deterioration due to the polar gap problem is minor.

Figure 3 evaluates solutions complete to degree 130 with incorporated prior information to

degrees nmax,µ = 10, 20 and 30. As a key finding of this section, we observe that the zonal and

near-zonal spherical harmonic coefficients are distinctly superior to the solution free from prior

information. Note that the cut-off degree nmax,µ noticeably influences the final solution. The

“zig-zag pattern” is to a large extent suppressed also for nmax,µ = 10 and 20, but the solution
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Figure 4: Geoid undulations (m) over two regions to be regionally refined, here called Indonesia (left panel)

and the Andes (right panel). Indonesia: min = −12.069 m, max = 9.447 m; The Andes: min = −6.916 m,

max = 8.629 m. The geoid undulations are synthesized from the EIGEN-6S reference model in the spectral

band 70–130 with the grid step of 0.1◦ in both directions. The red lines bound the areas where separate

regularization parameters will be used.

with nmax,µ = 30 shows the smallest difference degree amplitudes. This is achieved, however,

at the cost of unintended low-pass filtering of the geopotential starting near degree 80. This

effect can be seen from the thin green curve (the signal from the solution with nmax,µ = 30)

running below the black one (the signal from the EIGEN-6S reference model). As expected,

the smoothing effect decreases with decreasing the cut-off degree nmax,µ. For this particular

case, we therefore consider the cut-off degree nmax,µ = 10 as a proper choice. We expect that to

obtain optimum results with GOCE orbital data from a shorter/longer time period, a slightly

different value of nmax,µ might be required.

As far as the difference degree amplitudes are concerned, in the middle part of the spectrum,

all these solutions outperform the models in Fig. 2 almost by one order of magnitude. Not

shown in Fig. 3 for the sake of clarity, but within this spectral band, the modified difference

degree amplitudes remain practically unchanged. The benefit of this approach is that the

ratio between removing the “zig-zag pattern” and low-pass filtering of the geopotential can be

well-controlled by the choice of the cut-off degree nmax,µ.

3.5.3 Regional solutions

In the regional gravity field modelling, we neglect all the points in kinematic orbit with ground

tracks outside a given region (the data area). We aim at a regional refinement of the global

models over the bandwidth 70–130. We chose two study areas, depicted in Fig. 4, where the

geoid features the strongest variations between positive and negative values. We anticipate that

the regionally tailored gravity field recovery method might outperform the global approach

and extract some additional information about the gravity field (i.e. reduce the noise). To
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prevent edge effects, the data areas are extended by 10◦ in each direction with respect to the

study areas. The placing of the SRBFs is defined by the Reuter grid with the parameter

nmax = 130, considering only the points that fall inside the study areas extended by 20◦.

The long-wavelength gravity signal (degrees 0–69) is taken from our global model complete

to degree 100 with nmax,µ = 30. As the prior information, we always use the zero vector, i.e.

µ = 0, which is common in regional gravity field recovery.

Evaluations of the regional solutions are provided in Figure 5 and Table 2. The differences for

the Kaula-based solutions (not depicted here) show virtually the same behaviour. We observe

that the use of multiple regularization parameters noticeably improves the results. In particular,

the RMS errors decreased by about 8–11 %. Importantly, in addition to the RMS errors, all

the minimum and the maximum differences also dropped by about 10–25 %. This implies

that instead of the smoothing effect achieved in Sect. 3.5.2, this time we observe an overall

improvement. The regionally tailored regularization technique therefore indeed outperforms

the use of a single regularization parameter.

In our experiments, the Shannon-based results systematically turn out to be slightly superior

to the Kaula-based ones, since Kaula’s SRBF acts as a low-pass filter (note the larger minimum

and maximum differences). This is not surprising, as Kaula’s rule itself suppresses certain

frequencies of the gravity signal due to the underpowered geopotential within some spectral

bands. Naturally, the smoothing effect mostly affects the high frequencies of the geopotential

signal. This, however, contradicts one of the basic ideas upon which the regional gravity

field modelling is based. That is, to regionally extract additional high-frequency gravity field

features that may be difficult to detect on the global scale. We therefore prefer the Shannon

SRBF, which is free from prior assumptions on the behaviour of the degree variances of the

geopotential.

A mutual comparison of the signal (Fig. 4) with the discrepancies (Fig. 5) indicates a smooth-

ing even in the Shannon-based differences. To a large extent, we attribute this behaviour to the

prior information µ = 0. At first glance, this choice is natural, as the global residual gravity

signal has a zero mean. But in this case, the impact of µ = 0 seems to be significant which

results in a pushing the gravity signal towards the zero, i.e. the smoothing. A similar behaviour

was observed in Section 3.5.2, where we used various values of the cut-off degree nmax,µ. The

Table 2: Differences in terms of geoid heights between the regional SRBF solutions and the EIGEN-6S in the

spectral band 70–130. The differences are computed with the grid step of 0.1◦ in both directions. All values

are in metres.

Indonesia The Andes

SRBF Min Max Mean RMS Min Max Mean RMS

Regional solutions with a single regularization parameter

Shannon −4.442 4.563 −0.001 0.614 −3.729 4.367 −0.001 0.610

Kaula −4.861 5.184 −0.001 0.670 −4.102 4.690 −0.001 0.664

Regional solutions with multiple regularization parameters

Shannon −3.715 3.753 0.000 0.563 −2.832 3.273 0.000 0.559

Kaula −4.496 4.609 −0.001 0.610 −3.418 3.726 −0.001 0.591
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Figure 5: Geoid height differences (m) between the regional Shannon-based SRBF solutions and the EIGEN-6S

in the spectral band 70–130. Upper row – regional solutions with a single regularization parameter; bottom

row – regional solutions with multiple regularization parameters.

smoothing effect could be avoided or suppressed, e.g., by (i) using orbital data from a longer

time period; (ii) lowering the maximum degree nmax; (iii) choosing the prior information µ more

carefully. As for the last option, the prior information over the study area can be based, up to

some cut-off degree nmax,µ, on the global solutions presented in Sects. 3.5.1 and 3.5.2.

4 High-resolution regional gravity field modelling in a

mountainous area from terrestrial gravity data

4.1 Introduction

In recent years, significant progress has been made in gravity field modelling at very short

spatial scales. One of the major breakthroughs was certainly due to the EGM2008 model (Pavlis
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et al., 2012), which approximates the Earth’s gravity signal down to about 9 km resolution.

Though this resolution may suffice for some global applications, demands on regional gravity

field knowledge are often far beyond this scale. In rugged terrain, spherical harmonic models

are therefore often supplemented with high-frequency gravity information implied by the local

(residual) topography using a residual terrain model (RTM, Forsberg, 1984). Despite the

optimistic results achieved with high-degree harmonic models along with the RTM technique,

the main limiting factor of this combination is obvious. In practice, the RTM method cannot

deliver the true high-frequency gravity signal, owing to the (usually) assumed constant density

of topographic masses. To achieve further improvements, the residual short-scale signal needs

to be taken mainly from terrestrial data whose signal power is rich in high harmonic degrees,

e.g., gravity, deflections of the vertical or vertical gravity gradients. This can be done in

the remove-compute-restore fashion. The terrestrial observations, reduced by a high-degree

spherical harmonic model and RTM data, can be inverted into a residual field. To model the

residual component of the gravity field, we employ spherical radial basis functions.

Here we develop a regional gravity field model over the Slovak Republic (Central Europe)

by means of degree-2159 harmonic models, the RTM technique and a SRBF-based approach

to model the residual part from terrestrial gravity data. In this region, terrestrial gravity mea-

surements are dense enough (3 – 6 stations per km2, in some regions even more) to model the

gravity field up to degrees as high as 21 600. These circumstances provide a good opportu-

nity to perform high-resolution regional gravity field modelling via a combination of spherical

harmonics and SRBFs. Here we use the Shannon SRBF.

4.2 Regional gravity field modelling

We use terrestrial gravity data to estimate the residual part of the regional gravity field. At

first, the magnitude of the gravity vector g(r) is projected onto the radial direction using

deflections of the vertical predicted from EIGEN-6C4 (Förste et al., 2014) and the RTM. Then,

we transform the obtained radial projection gr(r) into a residual gravity disturbance

δgresr (r) = gr(r)− γr(r)− δgSHr (r)− gRTMr (r) , (7)

where γr(r), δgSHr (r) and gRTMr (r) are, respectively, negative values of the radial component

of the normal gravity vector, of the gravity disturbance vector synthesized from a spherical

harmonic model and of the RTM-implied gravitational vector. The observation equation for

the residual gravity disturbance is

δgresr (r) = −
I∑
i=1

ai
∂Φ(r, ri)

∂r
+ e (8)

with e being the observation error. Note that the coefficients ai now represent the residual

gravity field. In vector-matrix form, Eq. (8) reads

y = Ax + e , (9)

where y is the vector of residual gravity disturbances, A is the design matrix, x is the vector

of expansion coefficients and e is the error vector. The design matrix in the linear model (9)
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is ill-conditioned (e.g., Bentel et al., 2013), thus a regularization is necessary to obtain a nu-

merically stable solution. To this end, we apply the Tikhonov regularization along with the

variance components estimation approach (see, e.g., Klees et al., 2008) to obtain the optimum

regularization parameter.

4.3 Data

We use three main input data types.

1. Gravity data – Three terrestrial gravity data sets, here denoted as GD1, GD2 and GD3,

are used. The GD1 database consists of 211 631 observations (3 – 6 stations per km2) with

an expected accuracy of ∼0.1 – 0.2 mGal. The gravity data in GD2 comprise a total of

107 416 stations with an expected accuracy of about 0.1 mGal. The third database, GD3,

is a compiled grid of gravity disturbances within the area of Central Europe with the step

of 20 and 30 arcsec in ellipsoidal latitude and longitude, respectively. In this database, the

gravity stations outside the Slovak Republic are of poor quality (∼2 mGal), and therefore

are only used to reduce edge effects, i.e. several kilometres beyond the boundary of the

Slovak Republic

2. Global spherical harmonic models – The long and medium wavelengths of the gravity

field are modelled by EIGEN-6C4 up to its maximum harmonic degree 2190. Some of the

computations are also performed with EGM2008.

3. Topographic models – We approximate the topography by a national topographic model

DMR-3.5 at the spatial resolution of 2 arcsec, kindly provided by the Geodetic and Car-

tographic Institute Bratislava. The reference topography is represented by the spherical-

harmonic-based model DTM2006.0 (Pavlis et al., 2007) truncated at degree 2159.

For the validation purposes, we make use of four various gravity field quantities: the height

anomaly derived from GNSS/levelling data, the gravity, the astrogeodetic deflection of the

vertical and the vertical gravity gradient. These data types mutually complement each other

and thus enable validation from different perspectives. We use five data sets, some of which

are shown in Fig. 6.

1. GNSS/levelling data – The control GNSS/levelling points are divided into two sets, GL1

and GL2. The GL1 set consists of 347 control points with an accuracy of the height

anomaly better than 2 cm. In the GL2 data set, 61 points of a slightly lower accuracy

than in GL1 (∼2 cm) are grouped together. For the sake of clarity, the GL1 points are

not depicted in Fig. 6, but will be shown later.

2. Independent gravity data – 1264 gravity stations with an accuracy better than 0.02 mGal

are used as a next data set GD4 (also shown later).

3. Astrogeodetic deflections of the vertical – This data set, hereafter denoted as DV, consists

of 64 pairs of astrogeodetic deflections of the vertical with an expected accuracy of ∼0.2 –

0.3 arcsec. Note that this data set does not cover the whole territory. Instead, the

observations are located mainly in the roughest part of the country, and thus may provide

a valuable information on the local quality of the solution.
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Figure 6: Spatial distribution of some of the test data sets. The position of GL1 and GD4 is shown in Figs. 9

and 10, respectively.

4. Terrestrial vertical gravity gradients – Being the second-order derivative of the gravity

potential, vertical gravity gradients possess a strong signal power in high frequencies and

therefore may well serve for validating a high-resolution gravity field model. In total,

20 terrestrial vertical gravity gradients comprise the last data set VGG, see Fig. 6. Its

accuracy is estimated to ∼50 E (1 E = 10−9 s−2).

4.4 Results

Regional gravity field solutions

We use a total of 351 246 gravity stations to derive the residual component of the gravity field.

To reduce edge effects, the data from the GD3 database are taken up to the spherical distance

of 0.085◦ from the borders which is slightly more than the spatial resolution of degree-2159

spherical harmonic models. Since we expect different quality of the input gravity databases,

each one is treated as a separate observation group with its own variance factor to be determined

by the variance components estimation approach. The spatial distribution of the input data

enables to expand the residual gravity field up to degree nmax = 21 600 correspoding to 30 arcsec

spatial resolution. The spatial distribution of the points ri ∈ ΩR is defined by the Reuter grid

with the parameter nmax +1. Of this grid, only the points up to the spherical distance of 0.125◦

from the borders are used. Note that the points ri slightly exceed the data area in order to

improve the least-squares fit. The value 0.125◦ was found empirically. The total number of the

points ri, and thus also of the expansion coefficients, is 77 769. EIGEN-6C4 up to its maximum

degree 2190 is used to model the long and medium wavelengths of the gravity field.

In Table 3, we show the statistics of the least-squares residuals using nmin = 0 and nmin =

2160 in the series expansion of SRBFs (see Eq. 2). The residuals related to the GD1 database are

depicted in Fig. 7. Though the signal from EIGEN-6C4 was removed from the input gravity

data, the least-squares residuals for nmin = 2160 clearly imply that the harmonic degrees

below 2160 are still present in the input residual gravity disturbances.

To examine this issue, we performed a spectral decomposition (see, e.g., Freeden and Schnei-

der, 1998) of the residual gravity disturbances in spherical approximation (the negative first-

order radial derivative of the residual potential) synthesized from the estimated expansion

coefficients (nmin = 0), see Fig. 8. We decomposed the signal into 6 spectral bands: 3 bands
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Figure 7: Least-squares residuals (mGal) related to the GD1 database using nmin = 0 (upper panel) and

nmin = 2160 (bottom panel). See Table 3 for the statistics.

to degree 2159 (0 – 539, 540 – 1079, 1080 – 2159) and 3 bands beyond that degree (2160 –

5399, 5400 – 10 799 and 10 800 – 21 600). The residual signal below degree 2160 originates

mainly from inaccuracies in the input gravity data, EIGEN-6C4 and the RTM-implied signal.

In Section 4.4.1, each evaluation using independent data leads to a conclusion that the most

dominant part of this signal seems to be due to the errors in EIGEN-6C4 and the RTM, while

the errors of the input gravity data are expected to play a minor role, mostly of a high-frequency

nature. This implies that, in this particular case, the series expansion in Eq. (2) should start

at a lower degree than 2160 in order to absorb this useful part of the signal. This step, in turn,

results in a better solution as will be shown in Section 4.4.1. Instead of deciding which value of

nmin should be used, we simply put nmin = 0, though it is clear that harmonic degrees below,

say, 180 cannot be properly retrieved from such a small area.

The standard deviations obtained by the variance components estimation approach read (the

solution with nmin = 0) σ̂1 = 0.74 mGal, σ̂2 = 0.73 mGal and σ̂3 = 4.0 mGal. These estimates

confirm that, as expected, the quality of the GD3 database is significantly lower when compared

with GD1 and GD2 (see Section 4.3).

Table 3: Statistics of the least-squares residuals using nmin = 0 and nmin = 2160 in Eq. (2). The last column

shows the percentage of the residuals falling into the mGal-level.

Data min max mean RMS −1 to 1 mGal

set (mGal) (mGal) (mGal) (mGal) (%)

Solution with nmin = 0

GD1 −14.191 19.900 −0.056 0.666 90

GD2 −25.476 27.530 −0.026 0.709 92

GD3 −27.639 27.191 −1.308 3.699 34

Solution with nmin = 2160

GD1 −18.108 20.313 −0.087 1.374 64

GD2 −25.691 26.785 −0.197 0.930 82

GD3 −45.068 31.733 −2.662 6.770 17
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Figure 8: Spectral decomposition of residual gravity disturbances in spherical approximation (mGal) synthesized

from the expansion coefficients estimated with nmin = 0 in Eq. (2).

4.4.1 Evaluation of the regional gravity field models using independent data

GNSS/leveling data

The statistics of the differences between the height anomalies derived from the combined

model and from the GNSS/levelling data are reported in Table 4. It can be seen that the RTM

data and the SRBF-based part of the model improve the height anomalies at the GL1 points by

25 %. In the case of the GL2 data set, the gain in accuracy is on a negligible level if taking into
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Figure 9: Differences (m) between the predicted and GNSS/levelling-based height anomalies at the GL1 data

set. Upper panel – solution with nmin = 0, bottom panel – solution with nmin = 2160. The statistics are

reported in Table 4. The red lines bound the area where the residual signal below degree 2160 clearly improves

the solution (see also the same area in Fig. 8 in the spectral band of degrees 0 – 539).

Table 4: Statistics of the differences between the predicted and GNSS/levelling-based height anomalies after

the removal of the constant bias term.

Variant min max STD

(m) (m) (m)

The GL1 data (347 points)

EIGEN-6C4 −0.164 0.099 0.036

EIGEN-6C4 + RTM −0.114 0.106 0.031

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 0) −0.112 0.115 0.027

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 2160) −0.111 0.107 0.030

The GL2 data (61 points)

EIGEN-6C4 −0.098 0.141 0.036

EIGEN-6C4 + RTM −0.094 0.096 0.034

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 0) −0.110 0.087 0.035

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 2160) −0.094 0.094 0.034

account the accuracy of this data set (∼2 cm). The large number of control points in the GL1

data set provides a good opportunity to identify whether our solutions (or the GNSS/levelling

data) suffer from systematic deformations. In Fig. 9, we show the differences achieved with our

two combined models. It can be seen that some of the long-wavelength features in the solution

with nmin = 2160 are slightly reduced when using nmin = 0.

Independent gravity data

The statistics of the differences are reported in Table 5. We observe that the RTM-implied

gravity signal improves the gravity from EIGEN-6C4 by ∼83 % in terms of the RMS error.

After further adding the SRBF-based part of the signal (nmin = 0), the improvement rate is of

about 97 %. Clearly, the solution with nmin = 2160 is inferior to the one with nmin = 0 which

can also be seen from Fig. 10. Note that the long-wavelength character of the discrepancies

shown in the bottom panel of Fig. 10 is very similar, but of opposite sign, to that of the

correction signal (harmonic degrees 0 – 2159 in Fig. 8). Since the GD4 database is composed
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Figure 10: Differences (m) between the predicted and independent gravity at the GD4 data set. Upper panel –

solution with nmin = 0, bottom panel – solution with nmin = 2160. The statistics are reported in Table 5.

Table 5: Statistics of the differences between the predicted and independent gravity data.

Variant min max mean RMS

(mGal) (mGal) (mGal) (mGal)

The GD4 data set (1264 observations)

EIGEN-6C4 −61.851 80.078 6.815 17.091

EIGEN-6C4 + RTM −13.715 8.376 −0.379 2.862

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 0) −3.578 3.945 −0.090 0.526

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 2160) −8.192 7.393 −0.223 1.359

of high-quality terrestrial gravity data and is completely independent from the GD1, GD2 and

GD3 databases, this provides a strong evidence that, as claimed in Section 4.4, this signal is

due to the inaccuracies in EIGEN-6C4 and in the RTM, and it does not originate from the

input gravity data in GD1 or GD2.

Deflections of the vertical

The statistics of the differences between the synthesized and observed vertical deflections

are shown in Table 6. After adding the the RTM-effect and the SRBF-based part of the model,

we achieved an improvement rate of ∼80 %. The solution with nmin = 0 is again substantially

superior to that with nmin = 2160. It has to be noted that, similarly as in the case of height

anomalies, the RMS error of the differences (nmin = 0) approaches the expected accuracy of

the observations (∼0.2 – 0.3 arcsec).

Vertical gravity gradients

The statistics of the differences between the synthesized and observed vertical gravity gra-

dients are reported in Table 7. It can be seen that the RMS error dropped by about 70 %

after adding the RTM contribution, but only a negligible improvement is achieved when fur-

ther including the SRBF-based part of the combined model. This is not surprising given that

the vertical gravity gradient is a highly terrain-sensitive quantity.
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Table 6: Statistics of the differences between the predicted and observed deflections of the vertical.

Variant min max mean RMS

(arcsec) (arcsec) (arcsec) (arcsec)

The DV data set (64 values of ξ)

EIGEN-6C4 −3.568 6.316 −0.127 2.184

EIGEN-6C4 + RTM −1.688 2.440 −0.134 0.712

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 0) −1.015 0.922 −0.036 0.366

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 2160) −1.597 1.603 −0.103 0.583

The DV data set (64 values of η)

EIGEN-6C4 −7.815 3.769 0.415 1.966

EIGEN-6C4 + RTM −1.203 1.617 0.247 0.627

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 0) −0.673 1.159 0.111 0.419

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 2160) −1.039 1.490 0.215 0.561

Table 7: Statistics of the differences between the predicted and observed vertical gravity gradients.

Variant min max mean RMS

(E) (E) (E) (E)

The VGG data set (20 observations)

EIGEN-6C4 −2619.7 1239.3 −297.2 913.7

EIGEN-6C4 + RTM −775.9 322.4 −151.3 280.3

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 0) −766.7 315.5 −152.6 279.3

EIGEN-6C4 + RTM + the Shannon SRBF (nmin = 2160) −770.9 319.1 −157.7 280.8

5 Contribution of the thesis

1. We have shown that, while using the same data and processing strategy, regional solutions

from the GOCE orbit may outperform the global ones by about 10 % in terms of the

RMS error (geoid height).
2. We have proposed and applied an approach to stabilize the estimation of zonal and near-

zonal spherical harmonic coefficients of global GOCE-only gravity field models.
3. We have developed a high-resolution regional gravity field model over the Slovak republic.
4. We have derived correction spherical harmonic coefficients improving the EGM2008 and

EIGEN-6C4 models over the area of the Slovak Republic.
5. We have derived the second-order derivatives of spherical radial basis functions in the

LNOF, and provided the formulae in a numerically stable form, which avoids the singularity-

related issues.
6. We have developed and made publicly available two Matlab-based programs: GrafLab

(GRAvity Field LABoratory; Bucha and Janák, 2013) and isGrafLab (Irregular Surface

GRAvity Field LABoratory; Bucha and Janák, 2014). The former is designed to perform

spherical harmonic synthesis up to ultra-high degrees point-wise and at grids referring

to a regular surface (a sphere or an ellipsoid of revolution). The latter offers an efficient

grid-wise synthesis at irregular surfaces, e.g., the Earth’s surface.
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6 Concluding remarks

We have shown that gravity field modelling via band-limited SRBFs is able to produce solu-

tions of comparable or better quality than the commonly used spherical harmonics or numerical

integration techniques. Particularly, we have shown that if the same input data and processing

strategy are employed, the Shannon SRBF provides global gravity field models of essentially the

same quality as spherical harmonics. This result is not surprising, given that it can be shown

that global gravity field modelling by spherical harmonics and by the Shannon SRBF yields,

in theory, the same results. But, to the best knowledge of the author, such a straightforward

comparison as done here is not provided in the literature. Next, we have proposed and ap-

plied an approach to stabilize the estimation of (near-)zonal spherical harmonic coefficients of

GOCE-only solutions which are usually estimated weakly. Finally, we have shown that regional

solutions from the GOCE kinematic orbit may outperform the global ones by about 10 %. This

improvement is shown to be mainly due to the regionally tailored regularization strategy, which

is based on multiple regularization parameters.

In the terrestrial application, we have derived a regional gravity field model over the Slovak

Republic which improves EGM2008 and EIGEN-6C4 substantially. In particular, we have

shown that our combined model outperforms EIGEN-6C4 in the range from 25 % (height

anomalies) to 97 % (gravity). Some topics and issues should be addressed in the future to

achieve further enhancement. (i) It is the opinion of the author that the national digital

topographic model DMR-3.5 does not meet the current demands on the knowledge of the

topography in terms of both accuracy and spatial resolution. A high-quality digital topographic

model is of utmost importance in order to improve the short-scale properties of the combined

model, as the very short wavelengths of the gravity field are correlated with local topography

to a large extent. Note that, beyond the 30 arcsec spatial resolution, our combined gravity field

model relies solely on the topography-based information. The use of a topographic model of

higher quality should therefore be the first candidate to improve the combined model. (ii) To

validate quasigeoid solutions from terrestrial gravity data, we recommend to prefer the GL1

database over the usual GL2 in the future. Our results imply that the GL1 set is of higher overall

quality than GL2. Moreover, the GL1 data set consists of ∼5.5 times more GNLSS/leveling

points than GL2 which helps to better identify potential systematic deformations of the solution.

Next, our quasigeoid solution indicates that there might be a few outliers in the GL1 data set.

We therefore recommend to identify these outliers either by field measurements or by using

several high-quality quasigeoid solutions developed independently, and than to remove these

outliers from the database. (iii) Finally, the fact that terrestrial gravity data possess a strong

signal power in high harmonic degrees motivates us to carry out numerical tests also with

non-band-limited spherical radial basis functions.
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