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ABSTRACT

We study the notion of a common cause in quantum logics as a type of causal relations (see 
[13]). We review maps like conditional state, s-map as basic tools of our constructions. Finally, 
we show some properties of such notions in quantum logics.
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INTRODUCTION

Probability measure theory is the basis of many constructions in 
quantum structures. It can be understood as a mathematical model 
for the intuitive notion of  uncertainty [6]. Without probability 
measure theory all the stochastic models in physics, biology and 
economics either would not have been developed or would not 
be rigorous. The modern period of probability measure theory 
is connected to the names such as S.N. Bernstein (1880-1968), 
E. Borel (1871-1956) and A.N. Kolmogorov (1903-1987). 
Moreover, in Physics, a probability space cannot solve the problem 
of incompatible elements which appears in the Von Neumann model 
(1932). For that reason, researchers, for example (Von Neumann) 
looked for new techniques that could explain the situation where 
the elements are either compatible or incompatible. In connection 
with classical concept of probability measure theory trying to solve 
problems of incompatible random events, many researchers such 

as [1,10,11] have introduced equivalent approaches. One of these 
approaches is called  the orthomodular lattice (OML). Many variant 
maps have been defined on an orthomodular lattice to solve different 
types of quantum structure problems.  
One of the basic multivariate functions that has been proposed in 
quantum logic is a function called s-map, which was introduced 
by Olga Nánásiová in 2003. This function plays a main role in our 
constructions. 

1. BASIC NOTIONS

In this part, we review basic definitions, properties and propositions 
that we will need to build our constructions. These concepts have 
been studied in detail [1, 3, 12, 17]. We suppose that the triple (Ω, F, 
P) is a probability space [6]. The elements of σ -algebra F are called 
random events. It is a well-known fact that ∀ A, B ∈ F, A = (A∩B)∪ 
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(A∩BC). This property means that all random events are 
simultaneously measurable in a probability space. In this case, we 
say that A and B are compatible. Events A, B ∈ F are called 
independent, if P = (A∩B) = P(A)P(B). It is obvious that A and B are 
independent if and only if the conditional probability P(B  A) = B). 
Definition 1. 1 Let (Ω, F, P) be a probability space. Then C ∈ F is 
a common cause to A, B ∈ F if the following conditions hold: 
(1) ;
(2) ;
(3) ;
(4) .
Now, we can introduce the definitions and basic properties of 
orthomodular lattice and state. These notions have been studied in 
detail [1, 12, 17].

Definition 1. 2  Let L be a lattice with the greatest element 1L, the 
smallest element 0L and partial ordering ≤, endowed with a unary 
operation , such that the following conditions hold:  
(1) ;
(2) a ≤ b implies ;
(3) ;
(4) a ≤ b implies  

Then the system  is said to be  an orthomodular 
lattice. 
Condition (4) is called the orthomodular law. If the set L is closed 
under countable lattice operations, then  is called an orthomodular 
σ-lattice.
Let a, b ∈ L. We say that a, b are orthogonal (a ⊥ b), if a ≤ b⊥. 
We say that a, b are compatible (a ↔ b) if there exist mutually 
orthogonal elements a0,b0, c ∈ L such that a = a0 ∨ c and b = b0 ∨ 
c. This means that a ↔ b if and only if a = (a ∧ b) ∨ (a ∧ b⊥) and 
b = (a ∧ b) ∨ (a⊥ ∧ b).
It is a well-known fact that a = (a ∧ b) ∨ (a ∧ b⊥) for each a, b ∈ L. 
If, for each a, b ∈ L, a ↔ b, then  is a Boolean algebra [11, 16]. 
Definition 1. 3  Let  be an orthomodular lattice. A  state on  is 
a map m : L → [0,1] with the following properties: 
(1) ,
(2) , for any  such that  
whenever . 
Note that the state m is a notion corresponding to the notion of 
probability measure, and it is clear that m(0L) = 0. An orthomodular 
σ – lattice L with a σ – additive state m is called a quantum logic 
[12,17]. It has been shown that there exist orthomodular lattices that 
admit no state [11, 2].
The notion of a conditional state in quantum logic was introduced 
by Nánásiová [7] and it is based on the definition of  conditional 
probability in probability space, which was introduced in [16]. 

Definition 1. 4  Let  be a quantum logic and .  
A  conditional state (σ-conditional state) is a function  
that satisfies the following conditions:  
(1) for each ,  is a state on L;
(2) for each , ;
(3) if an∈L0, where n ∈ J ⊂ N and  for i, j ∈ J, i ≠ j and 
then for each b ∈ L 

Remark 1. 1  Let (Ω, F, P) be a probability space. Then for all A, B 
∈ F such that, , the following Bayesian property 
is true. , but this in general is not true 
in quantum logic. 
In the following, we introduce the definition of multivariate maps 
in quantum logic and their basic properties [7]. We start with 
a definition of an n-dimensional s-map: 

Definition 1. 5  Let  be a quantum logic. A function  is 
called an n-dimensional s-map if the following conditions hold:  
1. ;
2. If there exists i, such that , then ; 
3. If , then 

.
In particular, for n = 2, we can see that the conditions of the 
definition of an n-dimensional s-map are the following:  
 ;
 If , then ;
 If , then for any , 
 ;
 
Let Wn be the set of all n-dimensional s-maps (n = 1,2,...). It is 
clear that for  is a state on L. In fact, an s-map p is a notion 
corresponding to the measure of an intersection. Let L be a quantum 
logic, . If a ↔ b, then . Moreover, if a ↔ 
b, then . We say that a and b have a causal 
relation if .

2. INDEPENDENCE IN QUANTUM LOGIC
 
The theory of independence of random variables is one of the main 
concepts of a probability space. It is very important, for example, 
in the definition of conditional probability, Bayesian relations, etc. 
Also, the independence of elements in quantum logic is as important 
as in a probability space and is more general because it can be used 
to describe a type of causal relations. We will focus on an approach 
concerning the independence of elements in quantum logic using an 
s-map (see [8]).
Definition 2. 1  Let  be a quantum logic and f be a conditional state. 

Ahmed_Adille.indd   25 13. 12. 2010   17:58:03



26 A NOTE TO A COMMON CAUSE IN QUANTUM LOGIC

2010/4 PAGES 24 — 29

Let b ∈ L, a, c ∈ L0 such that . Then a,b are  independent 
with respect to the state  with notation  if and 
only if . 

Proposition 2. 1  Let  be a quantum logic,  and let f  be 
a conditional state. Then there exists  an s-map  that 
satisfies. 
 

Proposition 2. 2  Let  be a quantum logic,  
Let . Then  

 is a conditional state.

3. COMMON CAUSES IN QUANTUM LOGICS

In 1956 Reichenbach based the concept of common cause and in 
1997 Redie introduced a definition of common cause in probability 
space as a type of causal relations. 

3. 1 Interpretation of positively correlated elements in 
quantum logic

In this part, we review the classical definition of positively 
correlated events in a probability space (see[13, 14]). We interpret 
such a notion in quantum logic.
Now let us denote   where 

. 

Definition 3. 1. 1  Let  be a quantum logic and let . 
Elements a, b ∈ L are called positively correlated if

. 
If , then a, b are called negatively correlated. 

Lemma 3. 1. 1 Let  be a quantum logic, . Then the 
following relations are true 
 
Proof. Let a, b ∈ L and . Then . 
Hence

. (E.Q.D.) 

Lemma 3. 1. 2  Let  be a quantum logic,  Let a, b ∈ L. Then 
R(a, b) has the following properties:  
(1)  if and only if R(a, b) = 0 

(2) 
(3) 

(4) for a, b ∈ L

(5) 
(6) If , then 
(7) If a ↔ b, then  
Proof. It is enough to show the proof of property number (4)  
because  proofs of the other properties are straightforwardy. We 
firstly show that .

Let a, b ∈ L and . Then 

Hence . But , thus 
. Hence, 

Let us denote p(a, a) = k Then for the real function g(k) = k(1 – k), 

it is a well-known fact that  

Therefore, . 

In the second part of the proof, we want to show that  . Let

a0, b0 ∈ L such that  Then . Hence,  

 This means that  which contradicts the

first part of the proof. (Q.E.D.)

Proposition 3. 1. 1  Let  be a quantum logic,  and let a, b 
∈ L. Then .

Proof. We start by showing that  Let a, b ∈ L such that 

 . Then =

 Thus 

.

Thus . And this contradicts  the assumption, 
that . Therefore,  
To prove that  the same technique of the proof 
above can be used. (Q.E.D.) 
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Remark 3. 1. 1 Let  be a quantum logic. We can see that 
 for each .

 
Proposition 3. 1. 2  Let L be a quantum logic, . If a, b ∈ L 
such that , then for each , it holds: 

.
Proof. We prove one of these two properties. Let ,  Then 

          
          
which means that R is additive.  (Q.E.D.)  

3. 2 Definition of a Common Cause in Quantum Logic

In 1997, Redei proposed a definition of  common cause, which 
provides that events are compatible in a probability space. Similarly, 
we propose such a definition in quantum logic. One of the benefits 
of using the definition of a common cause in quantum logic is that 
the elements do not need to be compatible. This gives us more 
general constructions than constructions in a probability space. To 
introduce a proper definition of a common cause in quantum logic, 
we need to introduce concepts that help us build a definition of 
a common cause. 
Definition 3. 2. 1  Let  be a quantum logic, p ∈ Wk+n and a1,...,ak, 
b1,...,bn ∈ W. Aconditional s-map is a map fk+n ∈ Wk with the 
following property 

where . 

Lemma 3. 2. 1  Let  be a quantum logic, p ∈ W3. Then  
1.  If  and  then f2,1 is an 
s-map. 
2.  If  and  then f1,2 is 
a state. 
Proof. We only show (i) because (ii) follows directly from the first 
property (i).
(i) It is clear that . Let a, b ∈ L and let . It is 
clear, that . We show only aditivity: 

Similarly 
Therefore  is an s-map. (Q.E.D.) 

Lemma 3. 2. 2  Let L be a quantum logic,p ∈ W3 and let a,b,c,d ∈ 
L such that , and . Then 

Proof. Let  and . 
Then 

But 
 Therefore, 

Similarly, we obtain that 

(Q.E.D.)  

3. 3 Independence of elements in quantum logic

We turn now to the notion of the independence of elements with 
respect to an s-map in quantum logic. The definition can be 
proposed in the following way. 
Definition 3. 3. 1  Let  be a quantum logic, p ∈ Wk+n+t and a1,...,ak, 
c1,...,ct ∈ L. If there exist b1,...,bn, ∈ L such that

 and 

then we say that  is independent to  with respect 
to  (denoted by ). 
 
Lemma 3. 3. 1  Let L be a quantum logic p ∈ W3, and a,b,c, ∈ L If
 , 
then .
Proof. Let a,b,c, ∈ L such that for . Then 

Because ,
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then 
.

Hence 
,

then  (Q.E.D.)  
In particular, let f2,1 be a conditional s-map and f1,2 be a conditional 
state. We can see that if for a, b ∈ L there exists c ∈ L such that 

,  then 

Since we have prepared the background that a common cause is 
based upon, we are now able to put a proper definition of a common 
cause in quantum logic. 

Definition 3. 3. 2 Let  be a quantum logic, f2,1 be a conditional 
s-map and let . A common cause of 

 is an element , such that  and satisfies the 
following conditions:  
(1) 
(2) 
(3)  
(4) .
  
Proposition 3. 3. 1 Let  be a quantum logic, p ∈ W3 and f2,1 be 
a conditional s-map generated by p. If  is a common cause of 
a, b ∈ L, then  
Proof. We show that 

                    
Let  be a common cause of a, b ∈ L. It is clear 
that 

Let us denote  and ,

where . Then

Let . Thus, the terms  can 
be written in the following form
  

.

We obtain that 
 (1)

 (2)

Now, substitute equations (1), (2) in , we 
obtain 

.

Hence 

Further, subtract  from  and rearrange the terms 
of the quality above, we obtain 

It is clear that  and 
 thus 

                        

Hence 
, 

but 
,

respectively. Therefore,   (Q.E.D.)

Conclusions
Let  be a quantum logic,  be a conditional s-map and 
let a,b,c ∈ L. In fact, we can see that c is a common cause to (a,b), 
but c is not necessary in order to be a common cause to (b,a). We 
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notice that the whole structure of a common cause in quantum logic 
depends on the notion of a conditional s-map generated by an s-map 
p. In other words, the definition of a common cause will fail without 
an s-map.
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