I. STAFF

Professors
Lovíšek Ján, DSc + 421 2 59274 106 lovisek@svf.stuba.sk
Ravinger Ján, DSc + 421 2 59274 104 smravi@svf.stuba.sk
Sumec Jozef, DSc + 421 2 59274 124 sumec@svf.stuba.sk

Associate Professors
Adamča Ladislav, PhD + 421 2 59274 332
dicky@svf.stuba.sk
Dický Jozef, PhD + 421 2 59274 318
ejendzel@svf.stuba.sk
Jendželovský Norbert, PhD + 421 2 59274 364
Koleková Yvonna, PhD + 421 2 59274 231 kolek@cvt.stuba.sk
Králik Juraj, PhD + 421 2 59274 690 kralik@svf.stuba.sk
Marton Pavol, PhD + 421 2 59274 583 marton@svf.stuba.sk
Roško Peter, PhD + 421 2 59274 232 rosko@svf.stuba.sk
Sokol Milan, PhD + 421 2 59274 448 sokol@cvt.stuba.sk

Senior Lecturers
Hubová Olga, PhD + 421 2 59274 641 hubova@cvt.stuba.sk
Ivánková Olga, PhD + 421 2 59274 260 ivankova@cvt.stuba.sk
Kasala Miloš + 421 2 59274 209 kasala@svf.stuba.sk
Kereškényi Ján, PhD + 421 2 59274 334
Kleiman Peter + 421 2 59274 247 kleiman@svf.stuba.sk
Mikolová Marta, PhD + 421 2 59274 217
Mistríková Zora, PhD + 421 2 59274 251 mistriko@svf.stuba.sk
Prekop Lubomír + 421 2 59274 206 prekop@svf.stuba.sk
Psotný Martin + 421 2 59274 311 psotny@svf.stuba.sk
Šimonovič Miroslav + 421 2 59274 247 simonov@svf.stuba.sk
Véghová Ivana + 421 2 59274 311 veghova@svf.stuba.sk
Vyskoč Eduard + 421 2 59274 445 vyskoc@svf.stuba.sk

Doctoral Students
Fajna Pavol + 421 2 59274 256 fajna@svf.stuba.sk
Javorek Tomáš + 421 2 59274 256 javorek@svf.stuba.sk

Technical Staff
Tvrdá Katarína + 421 2 59274 291 tvrda@svf.stuba.sk
Poláčková Helena + 421 2 59274 230 polackov@svf.stuba.sk

II. EQUIPMENT

II.1 Teaching and Research Laboratories

Small laboratory for experimental mechanics
II.2 Special Measuring Instruments and Computers

22 PCs connected to a local network
Static/dynamic tensometric equipment
Photoelasticimeter
Helium-neon laser
Memory oscilloscope for analysis of dynamic processes

III. TEACHING

III.1 Graduate Study

Architecture and Civil Engineering

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Semester</th>
<th>Hours Per Week</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statics</td>
<td>2</td>
<td>2 - 2</td>
<td>P. Roško</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Sumec</td>
</tr>
<tr>
<td>Theory of Elasticity</td>
<td>3</td>
<td>3 - 3</td>
<td>Z. Mistríková</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>Structural Mechanics</td>
<td>4</td>
<td>3 - 2</td>
<td>N. Jendželovský</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Králik</td>
</tr>
<tr>
<td>Building Analysis</td>
<td>6</td>
<td>2 - 2</td>
<td>P. Roško</td>
</tr>
<tr>
<td>Elasticity Theory</td>
<td>7</td>
<td>2 - 2</td>
<td>J. Sumec</td>
</tr>
<tr>
<td>Numerical Method in Structural Mechanics</td>
<td>7</td>
<td>2 - 2</td>
<td>J. Králik</td>
</tr>
<tr>
<td>Structural Dynamics</td>
<td>7</td>
<td>2 - 2</td>
<td>M. Sokol</td>
</tr>
<tr>
<td>Plate and Spatial Structures</td>
<td>8</td>
<td>2 - 2</td>
<td>J. Králik</td>
</tr>
<tr>
<td>Non-Linear Mechanics</td>
<td>9</td>
<td>2 - 2</td>
<td>J. Lovišek</td>
</tr>
<tr>
<td>Interaction of Structures and Foundations</td>
<td>9</td>
<td>2 - 2</td>
<td>N. Jendželovský</td>
</tr>
<tr>
<td>Special Problems in Dynamics and Statics</td>
<td>10</td>
<td>2 - 2</td>
<td>J. Ravinger</td>
</tr>
</tbody>
</table>

Engineering Construction

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Semester</th>
<th>Hours per Week</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statics</td>
<td>2</td>
<td>3 - 3</td>
<td>M. Sokol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y. Koleková</td>
</tr>
<tr>
<td>Structural Mechanics I</td>
<td>3</td>
<td>3 - 3</td>
<td>P. Marton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Dický</td>
</tr>
<tr>
<td>Theory of Elasticity I</td>
<td>4</td>
<td>3 - 2</td>
<td>Y. Koleková</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Dický</td>
</tr>
<tr>
<td>Theory of Elasticity II</td>
<td>5</td>
<td>3 - 2</td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>Structural Mechanics II</td>
<td>6</td>
<td>3 - 2</td>
<td>P. Roško</td>
</tr>
<tr>
<td>Structural Dynamics</td>
<td>7</td>
<td>3 - 2</td>
<td>P. Marton</td>
</tr>
<tr>
<td>Computer Modeling</td>
<td>7</td>
<td>3 - 2</td>
<td>N. Jendželovský</td>
</tr>
<tr>
<td>Structural Mechanics (In English)</td>
<td>7</td>
<td>2 - 2</td>
<td>J. Dický,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O. Hubová</td>
</tr>
</tbody>
</table>
Optional Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Semester</th>
<th>Hours per Week</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability of Structures</td>
<td>8</td>
<td>2 - 2</td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>Plasticity Analysis of Structures</td>
<td>9</td>
<td>2 - 2</td>
<td>J. Sumec</td>
</tr>
<tr>
<td>Seismic Engineering</td>
<td>10</td>
<td>2 - 2</td>
<td>J. Králik</td>
</tr>
</tbody>
</table>

Recommended Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Semester</th>
<th>Hours per Week</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Computers in Civil Engineering</td>
<td>5</td>
<td>2 - 2</td>
<td>M. Sokol</td>
</tr>
<tr>
<td>Structural Modeling Using FEM</td>
<td>6</td>
<td>2 - 2</td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>Automation in the Statics of Structures</td>
<td>7</td>
<td>2 - 2</td>
<td>J. Králik</td>
</tr>
<tr>
<td>Structural Modeling in Statics and Dynamics</td>
<td>7</td>
<td>2 - 2</td>
<td>P. Roško</td>
</tr>
<tr>
<td>CAD in the Design of Structures</td>
<td>7</td>
<td>0 - 2</td>
<td>L. Prekop</td>
</tr>
<tr>
<td>Automation in Structural Dynamics</td>
<td>8</td>
<td>2 - 2</td>
<td>J. Králik</td>
</tr>
<tr>
<td>Practice in Structural Dynamics</td>
<td>8</td>
<td>2 - 2</td>
<td>P. Roško</td>
</tr>
<tr>
<td>Viscoelasticity of Structural Systems</td>
<td>8</td>
<td>2 - 2</td>
<td>J. Sumec</td>
</tr>
<tr>
<td>Automation in Non-Linear Structural Analysis</td>
<td>9</td>
<td>2 - 2</td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>Modelling Subgrades</td>
<td>9</td>
<td>2 - 2</td>
<td>N. Jendželovský</td>
</tr>
</tbody>
</table>

III.2 Postgraduate Study

Selected Aspects of Structural Mechanics
Selected Aspects of Applied Mathematics
Selected Aspects of Applied Physics
Planar and Spatial Structures
Mechanics of Bodies from Composite Materials
Finite Element Methods
Stability of Truss and Planar Structures
Structural Dynamics

IV. RESEARCH TARGETS

- Seismology - behaviour of building structures in seismic regions,
- Safety and reliability of nuclear power plant buildings under seismic, explosion and impact loads,
- Non-linear analysis of concrete and steel structures,
- Numerical analysis of static and dynamic soil-structure interaction,
- Development of computer methods in static, dynamic and non-linear structural analysis

V. RESEARCH PROJECTS

VEGA

TEMPUS, SOCRATES
1. SOKOL, M. : International Ruhr UNI Bochum exchange cooperation TU Bratislava, Fakulty Coordinator
2. SUMEC, J. : (Ceepus) Faculty Coordinator
3. DICKÝ, J.: Socrates – Erasmus Thematic Network Project: European Civil Engineering Education and Training (EUCEET). Faculty Coordinator
4. KOLEKOVÁ, Y.: Analysis, design and manufacturing recommendations for a glass – aluminium facade with improved strength properties according to Eurocode 9

VI. COOPERATION

VI.1 Cooperation in Slovakia

1. Institute of Construction and Architecture of the Slovak Academy of Science
2. Technical University of Košice
3. University of Žilina

VI.2 International Cooperation

1. Civil Engineering Institute of the Polish Academy of Science, Poland
2. Technical University of Opole, Poland
3. Technical University of Gliwice, Poland
4. Technical University of Cracow, Poland
5. Fakultät der Bauingenieurwesen Ruhr-Universität, Bochum, Germany
6. Bundesforschung und Prufzentrum, Arsenal, Vienna, Austria
7. Czech Academy of Sciences, Prague, Czech Republic

VI.2.1 Visitors to the Department

1. Assoc Prof. Andrzej Wawrzynek - University of Gliwice
2. Dr. Zbigniew Lipski - University of Gliwice
3. Dr. Ryszard Walentyński - University of Gliwice
4. Dr. J. Pilsniak - University of Gliwice
5. Dr. Jan Fedorowicz - University of Gliwice
6. Dr. Lidia Fedorowicz - University of Gliwice
7. Dr. S. Kempny - University of Gliwice
8. Dr. Micchial Matheja - University of Gliwice
9. Prof. Jan Kubik - University of Opole

VI.2.2 Visits of Staff Members and Postgraduate Students to Foreign Institutions

1. J. Dický – Norwegian University of Technology, Trondheim, Norway
2. J. Dický – Catalunya University of Technology, Barcelona, Spain
3. J. Dický – University of Civil Engineering, Bucharest, Romania
4. P. Fajna - Carl University in Prague, Czech Republic
5. P. Fajna - Konrad - Zuse-Zentrum fur Informationstechnik, Berlin, Germany
6. T. Javorek - Carl University in Prague, Czech Republic
7. T. Javorek - Institute of Kurt Bösch, Sion, Switzerland
8. J. Lovíšek - Carl University in Prague, Czech Republic
9. J. Lovíšek – Institute of Mathematics, Academy of Sciences of the Czech Republic
10. I. Koleková - Ruhr University, Bockum, Germany

VII. THESES

VII.1 Graduate Theses

<table>
<thead>
<tr>
<th>No.</th>
<th>Student’s name</th>
<th>Title</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Budinská Petra</td>
<td>Thin-Walled Girder with Circular Web Holes.</td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>2</td>
<td>Drach Imrich</td>
<td>Static and Dynamic Analysis of a Dwelling House.</td>
<td>O. Ivánková</td>
</tr>
<tr>
<td>3</td>
<td>Krajčí Benjamin</td>
<td>Static Analysis of Business-Service Centre.</td>
<td>O. Ivánková</td>
</tr>
<tr>
<td>4</td>
<td>Mrázová Radoslava</td>
<td>Spectrum Analysis of Response of Frame Structures to Seismic Effects - Programme Code.</td>
<td>M. Sokol</td>
</tr>
<tr>
<td>5</td>
<td>Rajníček Martin</td>
<td>Optimal Design of Polus City Center Building Structure under Seismic Loads</td>
<td>J. Králik</td>
</tr>
<tr>
<td>6</td>
<td>Ralbovská Terézia</td>
<td>Swimming Pool Roof - Steel Space Structure.</td>
<td>M. Sokol</td>
</tr>
<tr>
<td>7</td>
<td>Tosecký Andrej</td>
<td>Numerical Analysis of Soil Vibrations Caused by Moving Load on a Rigid Road.</td>
<td>M. Sokol</td>
</tr>
<tr>
<td>8</td>
<td>Tokár Otto</td>
<td>Static and Dynamic Analysis of a Church Tower.</td>
<td>P. Marton</td>
</tr>
</tbody>
</table>

VII.2 Doctoral Theses

<table>
<thead>
<tr>
<th>No.</th>
<th>Student’s name</th>
<th>Title</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fajna Pavol</td>
<td>Soil Structure Interaction Problem Considering Characteristics of Nonlinear Material during Seismic Action</td>
<td>J. Králik</td>
</tr>
<tr>
<td>2</td>
<td>Javorek Tomáš</td>
<td>Nonlinear Problems of Arches and Shell Structures</td>
<td>J. Králik</td>
</tr>
<tr>
<td>3</td>
<td>Kleiman Peter</td>
<td>Vibration of Imperfect Slender Webs</td>
<td>J. Ravinger</td>
</tr>
<tr>
<td>4</td>
<td>Prekop Ľubomír</td>
<td>Interaction of Wall System with Subsoil Including the Effect of Material Nonlinearity</td>
<td>N. Jendželovský</td>
</tr>
</tbody>
</table>
5. Psotný Martin Nonlinear Buckling Analysis of Thin-Walled Structures J. Ravinger
6. Šimonovič Miroslav Interaction of Structures with Subsoil Using Infinite Elements J. Králik
8. Vyskoč Eduard Non-Linear Analysis of Reinforced Concrete Structures J. Ravinger

VIII. OTHER ACTIVITIES

VIII.1 Special Lectures

VIII.2 Commercial Activities for Firms and Institutions

4. RAVINGER, J. : (04-228-01) Static – dynamic resolution of parabolic antenna, Hydrostav Košice
5. SOKOL,M.: (04-33-01) Detailed Calculation of Seismic Effects on Pružinka Bridge, CEMOS Bratislava
6. SOKOL,M.: (04-128-01) Detailed Calculation of Seismic Effects on a Railway Bridge, CEMOS Bratislava

VIII.3 Conferences and Workshops Organized

IX. PUBLICATIONS

IX.1 Journals

IX.2 Books and Textbooks

IX.3 Conferences

[53] SUMEC, J., JENDŽELOVSKÝ, N.: Thermomechanical Response of Lattice Circular Plate Under a Transverse Vibrating Load (Full text, CD ROM), TP 073, pp. 1-12

