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Abstrakt

Najvä£²í moºný rád n(d, k) grafu maximálneho stup¬a d a priemeru k nemôºe pre-
kro£i´ moorovskú hranicu M(d, k), ktorá má tvar M(d, k) = 1 +d+d(d−1) + · · ·+
d(d − 1)k−1. Hovoríme, ºe k moorovskej hranici sa dá asymptoticky priblíºi´ pre
priemer k, ak lim supd→∞ n(d, k)/M(d, k) = 1. Je známe, ºe to je moºné pre prie-
mery 2, 3 a 5. Ako dôkaz slúºia polaritné kvocienty inciden£ných grafov kone£ných
zov²eobecnených n-uholníkov majúcich polaritu pre n ∈ {3, 4, 6}.

V tejto práci skúmame moºnosti adaptácie týchto výsledkov na cayleyovské grafy
ve©kého rádu a identického priemeru. Pomocou tohto výskumu sme objavili alterna-
tívnu kon²trukciu cayleyovských grafov stup¬a d, priemeru 2 a rádu d2 + o(d2), pô-
vodne skon²truovaných v roku 2012 �iagiovou a �irá¬om. Okrem toho sme ukázali,
ºe k moorovskej hranici sa dá asymptoticky priblíºi´ pre priemer 3 cayleyovskými
grafmi. Nakoniec sa pozrieme na (ne)pouºite©nos´ rôznych kon²trukcií ve©kých cay-
leyovských grafov pre daný stupe¬ a priemer 4 alebo 5.

Abstract

The largest order n(d, k) of a graph of maximum degree d and diameter k cannot
exceed the Moore bound M(d, k) of the form M(d, k) = 1 + d + d(d − 1) + · · · +
d(d − 1)k−1. We say that the Moore bound can be asymptotically approached for
diameter k if lim supd→∞ n(d, k)/M(d, k) = 1. This is known to be true for diameters
2, 3 and 5. It follows by taking polarity quotients of the incidence graphs of �nite
generalised n-gons admitting a polarity for n ∈ {3, 4, 6}.

In this dissertation we investigate ways of strengthening these �ndings to large
Cayley graphs of the same diameter. As an application we �nd an alternative
construction of the family of Cayley graphs of degree d, diameter 2, and order
d2+o(d2), �rst introduced in 2012 by �iagiová and �irá¬. Further, we prove that the
Moore bound can be asymptotically approached for diameter 3 by Cayley graphs.
Finally, we discuss the (im)possibility of several constructions of large Cayley graphs
of given degree and diameter 4 or 5.
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1 Introduction

The core of this dissertation is formed by �ndings of three research papers [5, 3, 4] in which
we examined the possibilities of using the structure of �nite generalised polygons to construct
large vertex-transitive graphs of small diameter.

The degree-diameter problem, which is the problem of �nding the largest order of a graph of
given maximum degree and diameter, is one of the classical problems in extremal graph theory.
Presumably the earliest signi�cant result in the degree-diameter problem was presented by
Ho�man and Singleton in [25], where they determined all possible values of d for which there
can exist a certain graph of diameter 2 or 3 and degree d that is maximal according to a
certain de�nition. The problem of �nding large graphs of small degree and diameter gained
much attention during the last two decades of the 20th century, mainly because because of the
obvious applications in network designs. Since then, an extensive research lead to a number of
both theoretical and applied results in this area.

The history of �nite geometry has roots in the 19th century. One of the �rst individual
examples of a �nite geometry dates back to 1849, when Kirkman described what is now known
as a (603 603) con�guration. The �rst axiomatic treatment of �nite geometries, namely �nite
projective planes, is due to Fano, who is considered to be the founder of �nite geometry. One
of the most interesting classes of �nite geometries is the class of �nite generalised polygons.
Generalised polygons, which can be seen as a natural generalisation of projective planes, were
introduced by Tits in [43]. These geometries are not only intriguing from a pure geometrical
point of view, but they also provide many interesting combinatorial applications.

In 1962 Erd®s and Rényi [17] constructed a family of graphs, now also known as polarity
graphs, by taking polarity quotients of the incidence graphs of �nite projective planes. The
role of these graphs in the degree-diameter problem (for diameter 2) was realised several years
later, and it quickly lead to an observation by Delorme [15] that similar constructions based on
generalised quadrangles and generalised hexagons produce two new in�nite families of polarity
graphs of large orders and diameters 3 and 5, respectively. Since then, many new techniques
for constructing large graphs of given maximum degree and diameter have been developed but,
nevertheless, for all but �nitely many degrees the largest known graphs of given maximum
degree and diameter 2, 3 or 5 are either the polarity graphs or their modi�cations.

The purpose of this dissertation is to thoroughly explore possible applications of the three
aforementioned families of polarity graphs in the degree-diameter problem. Namely, we are
interested in how the graphs in these families can be used in the degree-diameter problem
for vertex-transitive, and in particular Cayley graphs. Polarity graphs are not regular, so
they cannot be vertex-transitive. Nevertheless, since they have a relatively large group of
automorphism, it is natural to ask if one can modify them to obtain large vertex-transitive
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CHAPTER 1. INTRODUCTION 2

graphs of given degree and small diameter. In Chapter 3 we look closely at symmetry properties
of the polarity graphs of �nite projective planes. Using these observations, we then develop an
alternative method of constructing the largest currently known Cayley graphs of given degree
and diameter 2. As we show in Chapter 4, this method can be extended to the polarity graphs
of generalised quadrangles, producing new record Cayley graphs for diameter 3. Then, in
Chapter 5, we explain why this approach does not carry over to an analogous construction
from generalised hexagons, and we also discuss other possible methods of constructing large
Cayley graphs of given diameter.



2 Background

In this chapter we present a number of preliminary de�nitions and properties related to gen-
eralised polygons and the degree-diameter problem. All graphs considered in this dissertation
are assumed to be �nite, simple and connected.

2.1 Preliminaries on generalised polygons

In this section we introduce the notion of a generalised polygon and provide several facts
and de�nitions that will be helpful in later sections and chapters. Most of these are considered
folklore, but all can be also found in [46], an excellent introduction to the theory of generalised
polygons.

2.1.1 Incidence geometries

De�nition 2.1.1. A geometry (of rank 2)1 G is a triple (P ,L, I), where P and L are disjoint
non-empty sets and I ⊆ P × L is a relation.

The elements of P and L are the points and lines of G, respectively, and the relation I is the
incidence relation of G. We will sometimes refer to the elements of P ∪ L as elements of G. A
geometry is said to be �nite if P and L are �nite sets. A geometry is called thick if each point
lies on at least three lines, and each line passes through at least three points. Throughout this
dissertation we will be interested only in �nite thick geometries.

If every line of a geometry G contains the same number of points, say s+ 1, and every point
of G lies on the same number of lines, say t + 1, we say that G has order (s, t). If s = t, then
we simply say that G has order s.

A subgeometry of a geometry G = (P ,L, I) is a geometry G ′ = (P ′,L′, I′) with P ′ ⊆ P ,
L′ ⊆ L and I′ = I ∩ (P ′ × L′). For each positive integer n, the ordinary n-gon is the unique
connected geometry of order 1 (if n ≥ 2) or 0 (if n = 1) with n points and n lines. Note that
each ordinary n-gon arise naturally from a (regular) polygon in the Euclidean space. (For cases
n = 1 and n = 2 we include a monogon and a digon, the two degenerate regular polygons.)

Next we introduce an important graph related to each geometry.

De�nition 2.1.2. The incidence graph L(P ,L), also called the Levi graph, of a geometry
G = (P ,L, I) is de�ned as the graph having one vertex associated with every element of P ∪L,
and two vertices a, b ∈ (P ∪ L) adjacent if and only if the elements a and b are incident in G.

1Geometries of rank 2 are sometimes called incidence structures or incidence geometries of rank 2.
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CHAPTER 2. BACKGROUND 4

Note that the incidence graph of a geometry is always bipartite, with P and L being the
two parts.

2.1.2 Symmetries of geometries

Let G = (P ,L, I) be a geometry. A collineation, or an automorphism, of G is a bijection
α : P ∪ L → P ∪ L that maps points to points and lines to lines, and preserves the incidence.
(That is, for each p ∈ P and ` ∈ L we have p I ` if and only if pα I `β.) A correlation of G is a
bijection from P ∪ L to itself that maps points to lines and lines to points, and preserves the
incidence.

The correlation group of a geometry G is the group of all collineations and correlations of
G. The set of all collineations of G form a subgroup of the correlation group of index at most
2. This subgroup is called the automorphism group of G, and denoted by Aut(G).

A polarity is a correlation of order 2. A geometry that admits a polarity is said to be self-
polar. An absolute point of a polarity π is a point p such that p I pπ, and an absolute line of π
is a line ` such that `πI `.

2.1.3 Generalised polygons

There are several equivalent de�nitions of a generalised polygon. Here we use the de�nition
by Tits given in [45]. The original de�nition (also due to Tits) can be found in [43].

De�nition 2.1.3 ([46]). Let n be a positive integer. A generalised n-gon is a geometry G =
(P ,L, I) such that:

(i) it has no ordinary k-gon as a subgeometry for 2 ≤ k < n;

(ii) for every pair x, y ∈ (P∪L) there is an ordinary n-gon (as a subgeometry of G) containing
both x and y;

(iii) there exists an ordinary (n+ 1)-gon (again as a subgeometry) of G.

It was shown in [21] that �nite generalised n-gons exist only if n = 3, 4, 6 or 8. We will refer
to these generalised polygons as generalised triangles, quadrangles, hexagons and octagons. We
also note that all generalised polygons are thick; see [46, Lemma 1.3.2] for example.

The following graph-theoretical characterisation of generalised polygons will be helpful. (See
Subsection 2.2.1 for de�nitions of the diameter and girth of a graph.)

Lemma 2.1.4 ([46]). A geometry G = (P ,L, I) is a generalised n-gon if and only if the inci-
dence graph of G is a connected graph of diameter n and girth 2n, such that each vertex has at
least three neighbours.

2.1.4 Finite generalised polygons admitting a polarity

Throughout this dissertation we will be particularly interested in �nite generalised polygons
that admit a polarity. The following fact about such geometries will be useful.
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Proposition 2.1.5 ([34, 36]). If a �nite generalised 2m-gon of order (s, t) admits a polarity,
then s = t and ms is a perfect square.

Up to this date there are three known in�nite families of �nite self-polar generalised polygons,
which we describe here.

Finite projective planes PG(2, q)

Let q be a prime power, and let F = GF(q) be the Galois �eld of order q. The projective
plane over F , denoted by PG(2, q), is a geometry whose points are the 1-spaces of F 3, lines
are the 2-spaces of F 3, and the incidence is given by symmetrised inclusion. Both points and
lines can be represented by projective triples, that is, equivalence classes [a] of non-zero triples
a = (a1, a2, a3) of elements of F , with two triples being equivalent if and only if one is a non-zero
multiple of the other. Namely, each point is represented by [v] where v is any non-zero vector
of the corresponding 1-space, and each line is represented by [w] where w is a normal vector of
the corresponding 2-space. It is easy to see that a point [a] and a line [b] (where a = (a1, a2, a3)
and b = (b1, b2, b3)) are incident if and only if abT = a1b1 +a2b2 +a3b3 = 0. (To make notation
clearer we will write [a]P if [a] represents a point and [a]L if [a] represents a line.)

Note that the number of 1-spaces (and consequently also the number of 2-spaces) in F 3

is q2 + q + 1. Also every 1-space is contained in exactly q + 1 two-spaces, and every 2-space
contains exactly q+ 1 one-spaces. It follows that PG(2, q) has q2 + q+ 1 points, q2 + q+ 1 lines,
and order q. The following observation is an easy exercise (and a well known fact).

Lemma 2.1.6. The projective plane over any �nite �eld is a �nite generalised triangle.

Let PG(2, q) = (P ,L, I) be the projective plane over GF(q). The mapping π : P∪L → P∪L
that interchanges [a]P and [a]L (for each projective triple [a]) is called the standard polarity
of PG(2, q). The order of π is clearly two, and since π also interchanges points and lines of
PG(2, q) and preserves the incidence, we �nd that π is a polarity of PG(2, q). It follows that
every projective plane over a �nite �eld is self-polar. For further information on polarities of
�nite projective planes we refer the reader to [6, 22].

Symplectic quadrangles W(22e+1)

Let q be a prime power, let F = GF(q) be the Galois �eld of order q, and let PG(3, q) be
the projective geometry over F . The points of PG(3, q) (that is, the 1-spaces of F 4) may be
represented by equivalence classes [a] of non-zero quadruples a = (a1, a2, a3, a4) of elements of
F , with the same equivalence as for projective triples. Next, let Q : F 4 × F 4 → F be a skew-
symmetric bilinear form. This form is usually taken to be (a,b) 7→ a0b1−a1b0 +a2b3−a3b2 but
here we prefer to use an equivalent form given by Q(a,b) = a0b3 − a3b0 + a1b2 − a2b1 for every
a,b ∈ F 4. A line of PG(3, q) is said to be totally isotropic (with respect to Q) if for any two
vectors v and w of the corresponding 2-space we have Q(v,w) = 0. The symplectic quadrangle
W(q) is a geometry whose points are the points of PG(3, q), lines are the totally isotropic line
of PG(3, q), and the incidence is given by symmetrised inclusion.

Similar to the previous case of �nite projective planes it is easy to see that the order of W(q)
is q. The number of points of W(q) is equal to the number of 1-spaces in PG(3, q), which is
q3 + q2 + q+ 1. It requires a little work to determine the number of lines of W(q). First we note
that for every point [a] there are q3 vectors b such that Q(a,b) = 0. Since q of those vectors
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Figure 2.1: The Doily

are scalar multiples of a, we �nd that there are exactly (q3 − q)/(q − 1) points [b] such that
the line of PG(3, q) given by a and b is totally isotropic. On the other hand, there are q(q+ 1)
ways how to chose an ordered pair of two distinct points on a line of W(q), and by an easy
counting argument it follows that W(q) has q3 + q2 + q + 1 lines. The symplectic quadrangle
W(2) (sometimes referred to as the Doily) shown in Figure 2.1 is the smallest example of a
generalised quadrangle. (The lines of W(2) are represented by 10 line segments and 5 circle
arcs.)

It is a well-known fact that all symplectic quadrangles are examples of generalised quad-
rangles. By Proposition 2.1.5 we know that not every symplectic quadrangle is self-polar. In
particular, if W(q) admits a polarity, then q must be an odd power of two. A classical result
of Tits [44] shows that the �if� in this statement can be replaced by �if and only if�. We will
describe a polarity of W(q) for each such q next, following [37] but using the skew-symmetric
bilinear form Q introduced earlier.

Let q = 22e+1 for some non-negative integer e, let F = GF(q), let ω = 2e+1, and let σ be
the automorphism of F given by σ(x) = xω for each x ∈ F . (Note that σ2(x) = x2.) Also
for every a ∈ F 4 we let ca = a0a3 + a1a2, and for every pair of vectors a,b ∈ PG(3, q) we let
δij = aibj +ajbi for any i, j ∈ {0, 1, 2, 3}. (Dependence of δij on a and b will always be assumed
but not shown in the notation.) A polarity π of W(q) can now be de�ned as follows:

Proposition 2.1.7 ([4, Proposition 2.1]). For a point p = [a] of W(q) let pπ be the set of all
non-zero vectors of F 4 spanned by the four vectors

(0, aω0 , a
ω
1 , c

ω/2
a ), (aω0 , 0, c

ω/2
a , aω2 ), (aω1 , c

ω/2
a , 0, aω3 ), and (cω/2a , aω2 , a

ω
3 , 0).

Conversely, for a line ` of W(q) through a pair of distinct points [a] and [b] let `π be the point
[d] of W(q) with coordinates given by

d0 = δ
ω/2
01 , d1 = δ

ω/2
02 , d2 = δ

ω/2
13 , and d3 = δ

ω/2
23 .

Then pπ is a line of W(q), and the mapping π is a polarity of W(q).
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Split Cayley hexagons H(32e+1)

There are several ways to de�ne split Cayley hexagons. A construction from a triality of a
nondegenerate hyperbolic quadrin in PG(7, q) can be found in [43], while an alternative method
of construction using a split Cayley algebra is given in [39] and [40]. Here we describe split
Cayley hexagons using the coordinatisation theory as in [46, Section 3.5].

Let q be a prime power, and let F = GF(q) be the Galois �eld of order q. Both points and
lines of the split Cayley hexagon H(q) will be represented by the ordered i-tuples of elements
of F for i ∈ {0, 1, 2, 3, 4, 5}. In order to distinguish between points and lines, the coordinates
will be written in parentheses and square brackets, respectively. Also, for clarity, we will write
(∞) and [∞] for the 0-tuples () and []. Next we describe the incidence relation. The point
(∞) (or the line [∞]) is incident with [∞] (or (∞)) and all the lines (or points) represented
by a 1-tuple. Next, for each element x of H(q) represented by an i-tuple with i ∈ {1, 2, 3, 4},
the elements incident with x are obtained by either removing the last coordinate or adding an
extra coordinate of any value to the end, and then changing the parentheses with the square
brackets, or vice versa. For example, the points incident with the line [k, b] are precisely the
points (k, b, k′), where k′ ranges over all of F , and the point (k). Finally, a point (a, `, a′, `′, a′′)
and a line [k, b, k′, b′, k′′] are incident if and only if

b = −ak + a′′,

k′ = a3k2 + `′ − `k − 3a2a′′k − 3a′a′′ + 3aa′′ 2,

b′ = a2k + a′ − 2aa′′,

k′′ = a3k + `− 3a′′a2 + 3aa′.

(2.1)

It is easy to see that H(q) has q5 + q4 + q3 + q2 + q + 1 points, q5 + q4 + q3 + q2 + q + 1
lines, and with some work it can be shown that the order of H(q) is q. It can also be proved
that H(q) is self-polar if and only if q = 32e+1 for some non-negative integer e. The �only if�
part of the statement follows by Proposition 2.1.5. The truth of the �if� part can be shown
by an explicit construction of a polarity. Let θ be the Tits automorphism of GF(32e+1), that
is, the automorphism of GF(32e+1) given by x 7→ x3

e+1
. Then the involutory mapping ρ that

interchanges (a, `, a′, `′, a′′) and [aθ, `θ
−1
, a′ θ, `′ θ

−1
, a′′ θ] is a polarity of H(32e+1). (The action of

ρ on i-tuples for 0 ≤ i ≤ 4 is given by the restriction to the �rst i coordinates of a 5-tuple.)
Note that (2.1) contains many terms with the coe�cient 3. For this reason the equations

become signi�cantly simpler when GF(q) has characteristic three. (As is the case with all
self-polar split Cayley hexagons.) Namely, if q = 3h, then a point (a, `, a′, `′, a′′) and a line
[k, b, k′, b′, k′′] are incident if and only if

b = −ak + a′′,

k′ = a3k2 + `′ − `k,
b′ = a2k + a′ − 2aa′′,

k′′ = a3k + `.

(2.2)

Further information on the coordinatisation of split Cayley hexagon (including proofs that
H(q) is a �nite generalised hexagons, and that ρ is a polarity) can be found in [14].
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2.1.5 Polarity graphs of generalised polygons

We now introduce a family of graphs related to self-polar geometries that will play a key
role in later chapters.

De�nition 2.1.8. Let G be a self-polar geometry and let π be a polarity of G. The polarity
graph PG,π is a graph whose vertices are the points of G, with two distinct vertices p1 and p2
adjacent if and only if the point p1 lies on the line pπ2 .

First we note that by the de�nition of a polarity a point p1 lies on a line pπ2 if and only if p2
lies on pπ1 , and hence PG,π is a well-de�ned simple graph. Also note that a polarity graph PG,π
can be de�ned equivalently as the quotient graph of the incidence graph of G obtained by the
factorisation by π, that is, by identifying p with pπ throughout and suppressing eventual edges
between p and pπ.

In what follows we let B(q) denote the polarity graphs PPG(2,q),π, where π is the standard
polarity of the corresponding projective plane, A(q) the polarity graphs PW(q),π, where q = 22e+1

and π is given by Proposition 2.1.7, and I(q) the polarity graphs PH(q),ρ, where q = 32e+1 and
ρ is de�ned as in Subsection 2.1.4. Whenever we use notation B(q), A(q) or I(q), we assume
an appropriate value of q. Some useful properties of polarity graphs B(q), A(q) and I(q) are
given in the following observation.

Proposition 2.1.9. Graphs B(q), A(q) and I(q) have orders q2 + q + 1, q3 + q2 + q + 1 and
q5 + q4 + q3 + q2 + q + 1, respectively, and maximum degree q + 1. Moreover, all vertices of
smaller degree have degree q, and there are exactly q + 1, q2 + 1 and q3 + 1 of them.

Proof. The �rst part follows by De�nition 2.1.8 and the properties of generalised polygons given
in Section 2.1.4. To prove the second part, let Γ be one of the graphs B(q), A(q) or I(q), and let
π be a polarity of a geometry G such that Γ = PG,π. Then (again by De�nition 2.1.8) a vertex
p of Γ has degree q if and only if p is an absolute point of π. If Γ = B(q) and p = [a], then this
is equivalent to a 2

1 + a 2
2 + a 2

3 = 0. It is an easy exercise (see [5, Lemma 2.1] for example) to
show that this equation has exactly q2−1 non-zero solutions, giving us a total of q+1 absolute
points. Similarly, the number of absolute points with respect to any polarity of W(q) or H(q)
is q2 + 1 or q3 + 1, respectively (see [46, Proposition 7.2.3]), and the rest follows easily.

2.2 The degree-diameter problem

In this section, we �rst give some background from graph theory, and then we introduce
some of the most important questions related to the degree-diameter problem. In particular,
we look in detail at the degree-diameter problem for vertex-transitive and Cayley graphs.

2.2.1 Background on graph theory

Let Γ be a graph. We will use V (Γ) and E(Γ) to denote the vertex set and the edges set
of Γ. Given any two vertices u, v ∈ V (Γ), a uv-path is a path between u and v. The distance
d(u, v) of two vertices u, v ∈ V (Γ) (in Γ) is the length of a shortest uv-path. The diameter of
a graph Γ, usually denoted by k, is the largest distance between any pair of vertices of Γ. A
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graph Γ is regular if all vertices of Γ have the same degree. If Γ is regular and all vertices have
degree d, we sometimes say that Γ is d-regular, or that Γ is of degree d. The girth of a graph
is the length of its shortest cycle. (If a graph does not contain any cycles, its girth is de�ned
to be in�nity.) Given a subset V ′ of V (Γ), the subgraph of Γ induced by V ′ is a graph Γ′ with
V (Γ′) = V ′ and E(Γ′) ⊆ E(Γ)∩ (V ′ × V ′). Finally, we say that a subgraph Γ′ of Γ is spanning
if V (Γ′) = V (Γ).

If Γ and Γ′ are two graphs, then an isomorphism from Γ to Γ′ is a bijection from V (Γ) to
V (Γ′) that preserves the adjacency of vertices. An automorphism of a graph Γ is an isomorphism
from Γ to itself. All automorphism of Γ form the automorphism group of Γ, denoted by Aut(Γ).

Recall that an action of a group G on a set X is transitive if for every x, y ∈ X there exists
g ∈ G such that xg = y. If for every x, y ∈ X there exists exactly one g ∈ G such that xg = y,
then the action is said to be regular. A graph Γ is vertex-transitive if Aut(Γ) is transitive on
the vertices of Γ. An important class of vertex-transitive graphs are Cayley graphs, which we
de�ne next.

De�nition 2.2.1. Let G be a group, and let X be a generating set for G, such that X is closed
under taking inverses, and 1G /∈ X. The Cayley graph C(G,X) is a graph whose vertex set
consist of all elements of G, with two distinct vertices g, h ∈ G adjacent if and only if h−1g ∈ X.

The two conditions on X imply that C(G,X) is a well-de�ned simple graph, and since X
generates G, we also see that C(G,X) is connected. A graph that is (isomorphic to) a Cayley
graph for a cyclic group is called a circulant graph.

The following classical theorem attributed to Sabidussi (see [38]) provides a useful charac-
terisation of Cayley graphs.

Theorem 2.2.2 ([38]). A graph Γ is a Cayley graph for some group G if and only if Aut(Γ)
has a subgroup isomorphic to G acting regularly on V (Γ).

An immediate consequence of Theorem 2.2.2 is that every Cayley graph is vertex-transitive.

2.2.2 Graphs of given maximum degree and diameter

For positive integers d and k let n(d, k) denote the largest order of a graph of maximum
degree d and diameter k. The degree-diameter problem is the problem of �nding the number
n(d, k). The answer is easy for the cases where d ≤ 2 or k = 1. The only (connected) graphs
of maximum degree 1 are the complete graphs K1 and K2, and hence n(1, k) is de�ned only
for k = 1 and n(1, 1) = 2. The largest graph of maximum degree 2 and diameter k is the cycle
graph with 2k + 1 vertices, and hence n(2, k) = 2k + 1. Finally, the largest graph of maximum
degree d and diameter 1 is the complete graph Kd+1, and it follows that n(d, 1) = d+ 1.

Setting trivial cases aside, the problem of determining the number n(d, k) turns out to be
very di�cult. In fact, up to this date n(d, k) is known only for seven pairs (d, k), namely (d, 2)
with 3 ≤ d ≤ 7 and (3, k) with 2 ≤ k ≤ 4.

Let Γ be a graph of maximum degree d and diameter k, and take any v ∈ V (Γ). Since
each vertex u at distance i from v can have at most d − 1 neighbours at distance i + 1 from
v (unless i = 0, in which case u = v and the number of neighbours at distance 1 is at most
d), it follows that for each j ≥ 1 there are at most d(d − 1)j−1 vertices at distance j from v.
Since Γ has diameter k, there are no vertices at distance k + 1 or larger from v, and hence
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Figure 2.2: Petersen graph with a root vertex

|V (Γ)| ≤ 1 + d + d(d − 1) + · · · + d(d − 1)k−1. This upper bound on the order of a graph of
maximum degree d and diameter k is known as the Moore bound, and denoted by M(d, k).

Example 2.2.3. Figure 2.2 shows the Petersen graph, the smallest vertex-transitive non-Cayley
graph. It is easy to see that the grey vertices are at distance 1 from the yellow vertex, and the
white vertices are at distance 2 from the yellow vertex. Then by vertex-transitivity we �nd that
the diameter of the Petersen graph is 2. Also, since the Petersen graph is 3-regular and has 10
vertices, we deduce that 10 ≤ n(3, 2). On the other hand, we have n(3, 2) ≤M(3, 2) = 10, and
hence n(3, 2) = 10.

As shown in Example 2.2.3, the order of the Petersen graph is equal to the Moore bound
M(d, k) for the corresponding values d = 3 and k = 2. Graphs with this property, that is, graphs
of degree d, diameter k, and order M(d, k) are called Moore graphs. The complete graphs Kn

for n ≥ 2 and the cycle graphs with 2m+ 1 vertices are the examples of Moore graphs of orders
M(n − 1, 1) and M(2,m), respectively. If d ≥ 3 and k ≥ 2, then n(d, k) = M(d, k) only for
k = 2 and d = 3, 7, and possibly 57, and the unique Moore graphs for the �rst two degrees are
the Petersen graph and the Ho�man-Singleton graph; see [25, 7, 13]. Similar to the Petersen
graph, the Ho�man-Singleton graph is also a vertex-transitive non-Cayley graph. The existence
of a Moore graph Γ of degree 57, diameter 2, and order 3250 is still an open problem, but if it
exists, then |Aut(Γ)| ≤ 375 (and if |Aut(Γ)| is even, then |Aut(Γ)| ≤ 110) and, in particular, Γ
is not vertex-transitive; see [32]. For further information on the `missing' Moore graph we refer
to a recent survey-type paper [12].

One of the most studied problems related to the Moore bound is the question posed in [8],
as to whether for every positive integer c there exists d and k such that n(d, k) < M(d, k)−c. A
substantial progress in this problem has been made in [19] by showing that for any �xed d and
any positive integer c the largest order of a vertex-transitive graph of degree d and diameter k
is smaller than M(d, k) − c for almost all k. Another well-known problem in this �eld is the
problem formulated by Delorme in [15], which we explain in the following section.

2.2.3 Asymptomatically approaching the Moore bound

The following problem appears to be one of the driving forces in the degree-diameter prob-
lem.



CHAPTER 2. BACKGROUND 11

De�nition 2.2.4. Delorme's problem is the problem of determining lim supd→∞ n(d, k)/M(d, k)
for every �xed k ≥ 2.

Note that the Moore bound has the form M(d, k) = dk + o(dk), and hence for each k we
have lim supd→∞ n(d, k)/M(d, k) = lim supd→∞ n(d, k)/dk. Also, since for every pair d, k we
have n(d, k) ≤M(d, k), it follows that lim supd→∞ n(d, k)/M(d, k) ≤ 1.

We now look at Delorme's problem for diameters 2, 3 and 5. By Proposition 2.1.9 we �nd
that polarity graphs B(q), A(q) and I(q) have maximum degree q + 1. Next, by Lemma 2.1.4
we know that the diameter of the incidence graph of a generalised n-gon is n. It is clear that
the diameter of a polarity quotient of the incidence graph must be less than diameter n of the
incidence graph, and hence B(q), A(q) and I(q) have diameters 2, 3 and 5, respectively. Since
B(q), A(q) and I(q) exist for an in�nite set of degrees d = q + 1, and their orders have the
form d2 + o(d2), d3 + o(d3) and d5 + o(d5), it follows that lim supd→∞ n(d, k)/M(d, k) = 1 for
k ∈ {2, 3, 5}. (This was �rst observed in [15].)

For the remaining diameters the best available results are much weaker, but far from
easy to prove. It was shown in [16] that lim supd→∞ n(d, 4)/M(d, 4) ≥ 1/4, and for k ≥ 6
we have lim supd→∞ n(d, k)/M(d, k) ≥ (1.6)−k, where 1.6 can be replaced by 1.57 for k ≡
−1, 0, 1 (mod 6); see [10].

There are various methods for constructing graphs of relatively small maximum degree d
and diameter k, and many of the largest currently known graphs for these values are not
vertex-transitive. But in the cases when d and k exceeds values manageable by these methods,
computer generation of large graphs of maximum degree d and diameter k is almost exclusively
limited to searching over Cayley graphs; see [28] and [11]. For this reason it is natural to ask for
which diameters the Moore bound can be asymptotically approached (in the sense of Delorme's
limit superior being equal to 1) by Cayley graphs. We formalise this in the following de�nition.

De�nition 2.2.5. Let Cay(d, k) denote the largest order of a Cayley graph of degree d and
diameter k, and let Cay(k) = lim supd→∞Cay(d, k)/M(d, k). We say that the Moore bound
can be asymptotically approached for diameter k by Cayley graphs if Cay(k) = 1.

In most of the cases, the best available estimates for Cay(k) are not as good as those for
lim supd→∞ n(d, k)/M(d, k). For each k ≥ 3 constructions of Cayley graphs in [30, 31] give
Cay(k) ≥ k · 3−k, and the lower bounds can be improved by [47] to 3 · 2−4, 32 · 5−4 and 25 · 4−5
for k = 3, 4 and 5, respectively. The strongest �nding so far in this area is the fact that
Cay(2) = 1, showing that the Moore bound for diameter 2 can be asymptotically approached
by Cayley graphs. This was shown in [41] by a direct construction of Cayley graphs of degree
d, diameter 2, and order d2 − O(d3/2) for an in�nite set of degrees d. We will frequently refer
to this construction, so we reproduce it for the reader's convenience later in this subsection.
As we will see in Chapter 4, this construction is equivalent to extending a regular orbit of a
graph B(q) for even prime power q under the action of a suitable group. We will also show
by using a variant of this geometric method that for an in�nite set of values d there exists a
Cayley graph of degree d, diameter 3, and order d3 − O(d2.5). In particular, this proves that
the Moore bound can be asymptotically approached for diameter 3 by Cayley graphs. For
k ∈ {4, 5, 6} the bounds for Cay(k) can be improved to 2−k by taking Cartesian products of
the record-holding Cayley graphs (of suitable degrees) for diameters 2 and 3. (This follows by
the fact that the Cartesian product of two d-regular Cayley graphs of diameters k1 and k2, and
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orders n1 and n2, is a Cayley graph of degree 2d, diameter k1 +k2, and order n1n2.) In the case
of vertex-transitive graphs the record-holders for k ≥ 7 are the graphs of Faber-Moore-Chen
type, obtained from the digraphs of Faber, Moore and Chen [20] by ignoring directions and
suppressing potential parallel edges.

The degree-diameter problem is often considered for Cayley graphs of abelian, or even cyclic
groups; see [48] and [9] for example. Even though we are interested only in the degree-diameter
problem for Cayley graphs of general groups, the following observation (see [18] for a short
proof) about circulants will be helpful.

Proposition 2.2.6. Let n ≥ 3, and let Zn be a cyclic subgroup of order n. Then there exists
a circulant for Zn of diameter 2 and maximum degree at most 2 d

√
n e.

We now describe the construction of large Cayley graphs of diameter 2 presented in [41].

Construction 2.2.7. Let e ≥ 2 be an integer, let F = GF(2e) be the Galois �eld of order
q = 2e, and let G be the one-dimensional a�ne group over F represented as the semidirect
product G = F+ oF ∗ with the multiplication given by (a, b)(c, d) = (a+ bc, bd). Note that F+

is isomorphic to the elementary abelian group of order 2e, and hence the elements of F+ can
be represented by vectors of the e-dimensional vector space over GF(2). Let A1 and A2 be the
set of all non-zero vectors with the �rst be/2c coordinates and the last de/2e coordinates being
equal to 0, respectively, and de�ne A = {(a, 1) ∈ G | a ∈ A1 ∪ A2}. Note that every element
in G of the form (z, 1) is a product of at most two element in A, and that A is closed under
taking inverses.

Next, recall that the multiplicative group F ∗ of a �nite �eld F is always cyclic, and hence
by Proposition 2.2.6 there exists a subset B′ of F ∗ such that |B| ≤ 2

⌈√
q − 1

⌉
and C(F ∗, B′)

has diameter two. It follows that every element in G of the form (0, z) with z 6= 1 is a product
of at most two element in B = {(0, b) ∈ G | b ∈ B′} and, moreover, B is closed under taking
inverses.

Finally, let C = {(c, c2) ∈ G | c ∈ F and c 6= 0}. Noting that (c, c2)(c−1, c−2) = (0, 1), we
�nd that C is closed under taking inverses. Now let (r, s) be any element of G such that r 6= 0
and s 6= 1. We will show that (r, s) = (x, x2)(y, y2) for some pair of non-zero elements x, y ∈ F ,
by �nding a solution of the following equations:

r = x+ x2y, (2.3)
s = x2y2. (2.4)

Since F has characteristic 2 and s 6= 1, there exists a unique t ∈ F ∗ such that t 6= 1 and s = t2.
It follows that xy = t, and consequently r = x(1 + t). But t 6= 1, and hence 1 + t is invertible
in F , and we �nd that x = r(1 + t)−1 and y = t(1 + t)r−1.

We have shown that every element in G is a product of at most two elements in A∪B ∪C,
and since this set is closed under taking inverses and does not contain the identity element, it
follows that C(G,A ∪ B ∪ C) is a Cayley graph of degree q + O(

√
q), diameter 2, and order

q(q−1). Letting d = q+O(
√
q), we �nd that for an in�nite set of values d there exists a Cayley

graph of degree d, diameter 2, and order d2 + o(d2).

For further information on the degree-diameter problem in the context of how closely can the
Moore bound be approached by general, vertex-transitive, or Cayley graphs we recommend [33].



3 Polarity graphs and their symmetries

In this chapter, we �rst determine the automorphism groups of polarity graphs B(q), A(q)
and I(q), and then we derive various properties of B(q) (mostly related to the action of its
automorphism group on vertices). In particular, we show that for any su�ciently large odd
prime power q there is no vertex transitive graph of degree at most q + 3 which contains B(q)
as a spanning subgraph, and also that for each e ≥ 2 the only non-edgeless graph induced by
an orbit of Aut(B(2e)) on the vertices of B(2e) is a vertex-transitive non-Cayley graph.

3.1 Automorphism groups of polarity graphs

First, we give some background in group theory. The 3-dimensional projective orthogonal
group PGO(3, q) is the factor group of the subgroup of GL(3, q) consisting of orthogonal matrices
by the centre of this group. The group PΓO(3, q) is the obvious extension of PGO(3, q) by
Galois automorphisms of GF(q). The Suzuki group Sz(22e+1) is the subgroup of Aut(W(22e+1))
stabilising the set of absolute elements of the polarity π of W(22e+1) de�ned in Proposition 2.1.7.
The Ree group Ree(32e+1)1 is the subgroup of Aut(H(32e+1)) stabilising the set of absolute
elements of the polarity ρ of H(32e+1) described in Subsection 2.1.4. Both Suzuki and Ree
groups form an in�nite family of groups of Lie type, and they are all simple except for Sz(2)
and Ree(3); see [44] and [46, Section 7.7].

The automorphism group of B(q) was determined in [35]. In [5] we provided a di�erent and
shorter proof, which includes a more detailed discussion on groups. In the following theorem
we determine the automorphism groups also for A(q) and I(q).

Theorem 3.1.1. The automorphism groups of B(q), A(q) and I(q) appears in Table 3.1

Proof. For B(q) this is [5, Theorem 3.1]. We will show that Aut(A(q)) ∼= Sz(q). First, let α
be an automorphism of A(q), let P and L denote the points and lines of the corresponding
symplectic quadrangle W(q), and let π be the polarity of W(q) such that A(q) = PW(q),π. Also
let α : P ∪ L → P ∪ L be a bijection given by pα = pα and `α = `παπ for every p ∈ P and
` ∈ L. By De�nition 2.1.8 we know that p and ` are incident in W(q) if and only if p and `π

are adjacent in A(q), which is true exactly when pα and `πα are adjacent in A(q). But this is
equivalent to pα and `παπ being incident in W(q), and it follows that α is an automorphism of
W(q). Moreover, since the absolute points (of π) are exactly the vertices of A(q) of degree q, it
follows that α preserves the set of absolute elements.

Next, let σ be an automorphism of W(q) stabilising the set of absolute elements for π. Then
the polarity σ−1πσ has the same set of absolute elements as π. But two polarities of W(q) with

1In some literature Ree groups Ree(q) are denoted by 2G2(q).

13
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Graph Automorphism group Comments Order

B(q) PΓO(3, q) q = pn for p prime nq(q2 − 1)
A(q) Sz(q) q = 22e+1 for e ≥ 0 q2(q2 + 1)(q − 1)
I(q) Ree(q) q = 32e+1 for e ≥ 0 q3(q3 + 1)(q − 1)

Table 3.1: Automorphism groups of polarity graphs

the same sets of absolute elements coincide (see [46, Corollary 7.6.3]), and hence σ centralises
π. In particular, we have pσπ = pπσ for every p ∈ P . Two vertices p1 and p2 of A(q) are adjacent
if and only if p1 and pπ2 are incident in W(q). Since σ is an automorphism of W(q), this is
true exactly when pσ1 and pπσ2 are incident in W(q). Noting that pπσ2 = pσπ2 , we deduce that p1
and p2 are adjacent if and only if pσ1 and pσ2 are adjacent in A(q). It follows that σ induces an
automorphism σ of A(q) given by p 7→ pσ.

Recall that the subgroup of Aut(W(q)) stabilising the set of absolute elements of π is the
Suzuki group Sz(q). It can be easily seen that the homomorphisms from Aut(A(q)) to Sz(q)
and from Sz(q) to Aut(A(q)) given by α 7→ α and σ 7→ σ are both injective, and hence
Aut(A(q)) ∼= Sz(q).

The same argument can be used to show that Aut(I(q)) ∼= Ree(q). (Two polarities of H(q)
with the same absolute elements coincide by [46, Corollary 7.7.3], and the group of automor-
phism of H(q) stabilising the set of absolute elements of ρ is the Ree group Ree(q).)

Note that despite not being vertex-transitive, polarity graphs B(q), A(q) and I(q) have a
relatively high level of symmetry in the sense of having a fairly large automorphism group
compared to their order. For example, the automorphism group of a polarity graph A(q) has
order q2(q2 + 1)(q−1), which is almost q2 times larger than the order q3 + q2 + q+ 1 of A(q). In
contrast, many examples of vertex-transitive graphs have the same order as their automorphism
groups. (Note that the action of the automorphism group on the vertices of such graph must be
regular, and hence all graphs with this property are Cayley.) This suggests that investigation of
the polarity graphs can lead to constructions of large vertex-transitive, or even Cayley graphs
of given degree and diameter.

In view of the constructions of �nite generalised polygons in Subsection 2.1.4, it is not
surprising that the structure of polarity graphs gets more complex with the increasing diameter.
For this reason, our strategy is to thoroughly explore possible ways of modifying polarity graphs
B(q) to obtain large vertex-transitive graphs of given degree and diameter 2, and then try to
apply carefully designed variants of the successful methods to A(q) and I(q).

3.2 Structure of polarity graphs B(q)

In this section we present a number of facts about polarity graphs that were �rst proved
in [35]. We refer to [5] for much shorter proofs of these observations based on various known
facts about projective planes.

Let [a] be a vertex of a polarity graph B(q). Note that by de�nition of B(q) it follows that
[a] is adjacent to a vertex [b] ∈ B(q) if and only if abT = 0 and [a] 6= [b]. By Proposition 2.1.9
(and its proof) we know that [a] has degree q or q + 1 depending on whether aaT is equal to
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zero or not. A vertex [a] satisfying aaT will be called a quadric vertex of B(q). The number
of quadric vertices of B(q) is (again by Proposition 2.1.9) q + 1, and hence the vertex set of
B(q) is a disjoint union of the set W of q + 1 quadric vertices, and the set V of q2 vertices of
degree q+ 1. We also let V1 denote the subset of V containing all vertices adjacent to a quadric
vertex, and let V2 = V \ V1.

Proposition 3.2.1 ([5, Proposition 2.2]). The graph B(q) has the following properties:

(a) no two quadric vertices are adjacent;

(b) every pair of vertices in V (adjacent or not) is connected by a unique path of length 2,
while no edge incident to a quadric vertex is contained in any triangle;

(c) the diameter of B(q) is 2;

(d) if q is odd, then every vertex of V1 is adjacent to exactly two quadric vertices, and the
subgraphs of B(q) induced by V1 and V2 are regular graphs of degree (q−1)/2 and (q+1)/2
and order q(q + 1)/2 and q(q − 1)/2, respectively;

(e) if q is even, then |V1| = q2 and V2 is empty; moreover, the vertex [1, 1, 1] ∈ V1 is adjacent
to all quadric vertices (and no other vertex of B(q)), and every other vertex of V1 is
adjacent to exactly one quadric vertex; in particular, the subgraph of B(q) induced by the
set V1 \ {[1, 1, 1]} is a q-regular graph of order q2 − 1.

The following observation made in [17] is an easy consequence of Proposition 3.2.1.

Corollary 3.2.2. The graph B(q) has no cycle of length 4.

Proof. Suppose to the contrary that B(q) contains a 4-cycle (u, v, w, x). Then there are two
distinct uw-paths of length 2, and hence by Proposition 3.2.1(b) we �nd that u ∈ W or w ∈ W .
In either case, it follows by Proposition 3.2.1(a) that the neighbours v and x of u (or w) must
be both contained in V . But this is impossible since v and x are connected by two distinct
paths of length 2.

The automorphism group PΓO(3, q) of B(q) obviously preserves the sets W , V1 and V2 for
q odd, and the sets W , {[1, 1, 1]} and V1 \ {[1, 1, 1]} for q even. In fact, it can be shown that
these sets are the orbits of the vertex set of B(q) under the action of the subgroup PGO(3, q)
of Aut(B(q)). By [24, Corollary 7.15] we know that PGO(3, q) has a triply transitive action on
W , and the analysis of [35] shows for q odd that PGO(3, q) is arc-transitive on the subgraphs
of B(q) induced by V1 and V2. For q even we proved much more, extending the last observation
in Section 6 of [35].

Theorem 3.2.3 ([5, Theorem 3.2]). If q is a power of 2, then the automorphism group of
the graph B0(q) induced by the set V1 \ {[1, 1, 1]} is isomorphic to PΓO(3, q). Moreover, for
q ≥ 4 the smallest subgroup of PΓO(3, q) acting transitively on the vertices of B0(q) is the
group PGO(3, q), which also acts regularly on the arcs of B0(q). In particular, B0(q) is a
vertex-transitive non-Cayley graph for q ≥ 4.
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(a) Graph B(2) (b) Graph B(3)

Figure 3.1: Orbits of V (B(q)) under the action of the automorphism group

Here we note that PΓO(3, q) ∼= PΓL(2, q) and PGO(3, q) ∼= PGL(2, q) for every prime power
q; see [24] for example. Moreover, if q is even, then every element of PGO(3, q) has the form 1 + a 1 + c 1 + a+ c

1 + b 1 + d 1 + b+ d
1 + a+ b 1 + c+ d 1 + a+ b+ c+ d

 (3.1)

with a, b, c, d ∈ GF(q) and ad+ bc = 1, and the mapping Φ: PGO(3, q)→ PGL(2, q) given by 1 + a 1 + c 1 + a+ c
1 + b 1 + d 1 + b+ d

1 + a+ b 1 + c+ d 1 + a+ b+ c+ d

 7→ (
c a
d b

)
(3.2)

is a group isomorphism. This isomorphism will be helpful in the following section.
To conclude this section, we provide an example that illustrates some of the properties of

polarity graphs B(q) for both even and odd values of q.

Example 3.2.4. Figure 3.1 shows the two smallest examples of polarity graphs B(q), namely
B(2) and B(3). The three yellow vertices in Figure 3.1a correspond to quadric vertices of degree
2, the grey vertex corresponds to the vertex [1, 1, 1] of B(2), the unique vertex adjacent to all
quadric vertices, and the three white vertices correspond to the vertices in V1 \{[1, 1, 1]}, which
are adjacent to exactly one quadric vertex. By Theorem 3.1.1 we know that the automorphism
group of B(2) is the group PΓO(3, 2), which is isomorphic to the symmetric group Sym(3).
The three colours of vertices in Figure 3.1a correspond to the three orbits of V (B(2)) under
the action of PΓO(3, 2). Note that by Theorem 3.2.3 this is the only case for q even when
the subgraph B0(q) of B(q) induced by the set V1 \ {[1, 1, 1]} is Cayley. In particular, B0(2) is
isomorphic to the circulant C(Z3, {1, 2}).

Similar to the previous case, the yellow vertices in Figure 3.1b correspond to the quadric
vertices in W of degree 3. The set V of 9 vertices of degree 4 is a disjoint union of the set V1
containing the vertices adjacent to a quadric vertex, and the set V2 of vertices with no neighbour
in W . Vertices in sets V1 and V2 correspond to the grey and white vertices in Figure 3.1b.
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The automorphism group of B(3) is (again by Theorem 3.1.1) the group PΓO(3, 3), which is
isomorphic to the symmetric group Sym(4). Again the three colours of vertices in Figure 3.1b
correspond to the three orbits of V (B(3)) under the action of PΓO(3, 3). Note that the subgraph
induced by the grey vertices is disconnected. With some work, it can be shown that this is
the only case for q odd when at least one of the subgraphs of B(q) induced by V1 and V2 is
disconnected. In contrast, by Proposition 3.2.1(a) we know that for every prime power q the
subgraph of B(q) induced by W is totally disconnected.

3.3 Vertex-transitive graphs from polarity graphs B(q)?

Polarity graphs B(q) can be easily extended to (q + 1)-regular graphs by adding a perfect
matching between the vertices in W for q odd, and by adding an extra vertex adjacent to all
quadric vertices for q even. Even though these graphs are regular, they are not vertex-transitive.
In the case when q is even, this follows by the fact that the vertex [1, 1, 1] and the new vertex
are the only two vertices with the same neighbourhood. In the case when q is odd, this is an
easy consequence of Proposition 3.2.1; see [42]. In [5] we extended the latter observation by
showing the following:

Theorem 3.3.1 ([5, Theorem 4.1]). For any odd prime power q ≥ 37 there is no vertex-
transitive graph of degree q + 3 which contains the polarity graph B(q) as a spanning subgraph.

In Theorem 3.3.1 and the discussion above, we addressed the question if we can add �a
few� edges to B(q) to obtain a vertex-transitive graph. On the other hand, some interesting
vertex-transitive graphs can be obtained as induced subgraphs of polarity graphs B(q). For
example, by Proposition 3.2.1 and Theorem 3.2.3 we know that for every even prime power q
the subgraph B0(q) of B(q) induced by the set V1 \ {[1, 1, 1]} is a vertex-transitive non-Cayley
graph of degree q and order q2 − 1. For q odd, the subgraphs B1(q) and B2(q) induced by V1
and V2 are vertex transitive graphs of degree (q − 1)/2 and (q + 1)/2 and order q(q + 1)/2 and
q(q − 1)/2, respectively.

In contrast with Theorem 3.2.3, if q is even, then there exists a subgroup of PGO(3, q) that
is regular on the set V ∗ = V1 \ {[t, t, 1], t ∈ GF(q)}. Namely, if H is the subgroup of PGO(3, q)
formed by the matrices of the form (3.1) such that a+b+c+d = 0, then it can be easily veri�ed
that |H| = q(q − 1), and that H is regular on the V ∗. In particular, the subgraph B∗(q) of
B(q) induced by the set V ∗ is a Cayley graph for H. The following theorem shows that, quite
surprisingly, the Cayley graphs C(G,C) from Construction 2.2.7 are isomorphic to the graphs
B∗(q).

Theorem 3.3.2 ([5, Theorem 4.3]). If q is a power of 2, then C(G,C) is isomorphic to B∗(q).



4 Cayley graphs of diameter 2 and 3

In this chapter we show that the Moore bound can be asymptotically approached for diam-
eters 2 and 3 using Cayley graphs obtained by extending regular orbits of suitable subgroups of
Aut(B(q)) and Aut(A(q)). We also show that both constructions are based on a more general
unifying principle.

4.1 Cayley graphs from B(q)

Recall that for q even we de�ne B∗(q) as the subgraph of the polarity graph B(q) induced
by the set V1 \ {[t, t, 1], t ∈ GF(q)}. The main theorem of this section is the following:

Theorem 4.1.1 ([5, Theorem 4.2]). For every even prime q there exists a Cayley graph of
diameter 2 and degree q +O(

√
q) as q →∞, with B∗(q) as a spanning subgraph.

Proof. Let F = GF(q), let G be the one-dimensional a�ne group over F represented as the
semidirect product G = F+ o F ∗ with the multiplication given by (a, b)(c, d) = (a + bc, bd),
and let C be the subset of G consisting of all elements of the form (c, c2), where c is a non-
zero element of F . Then there exist sets A and B (described in Construction 2.2.7) such that
C(G,A ∪B ∪ C) is a Cayley graph of diameter 2, and |A ∪B| = O(

√
q) as q →∞.

Next, let H be the subgroup of PGO(3, q) formed by the matrices of the form (3.1) with
a + b + c + d = 0, let X be a generating set for H such that C(H,X) is isomorphic to
B∗(q), and let ϕ be an isomorphism from H to G which maps X to C. (An example of such
isomorphism is given in Theorem 3.3.2.) Then B∗(q) is a spanning subgraph of the Cayley
graph C(H,ϕ−1(A) ∪ ϕ−1(B) ∪X) of degree q +O(

√
q) and diameter 2.

We note that the original proof of Theorem 4.1.1 presented in [5] is di�erent from the one
presented here, and it uses various properties of polarity graphs B(q) for q even.

4.2 Cayley graphs from A(q)

In [4] we showed that a variant of the method used in the original proof of Theorem 4.1.1
can be applied to polarity graphs A(q), giving us the following:

Theorem 4.2.1 ([4, Theorem 5.1]). For every positive integer e and q = 22e+1 there exists a
Cayley graph of diameter 3 and degree q +O(

√
q) as q →∞.

The following fact is an immediate consequence of Theorem 4.2.1.

Corollary 4.2.2. The Moore bound can be asymptotically approached for diameter 3 by Cayley
graphs.

18



CHAPTER 4. CAYLEY GRAPHS OF DIAMETER 2 AND 3 19

4.3 General principle

In [3] we showed that the methods we described in Sections 4.1 and 4.2 are based on a
certain underpinning principle which we reproduce here.

Theorem 4.3.1 ([3, Theorem 2.1]). Let Γ be a graph of maximum degree d and diameter k ≥ 2
such that:

(1) there is a subgroup G of Aut(Γ) regular on one of its orbits O ⊂ V ;

(2) every vertex v ∈ V \ O adjacent to a vertex in O has a vertex stabiliser in G that acts
regularly on N(v) ∩O; and

(3) there exists a δ > 0 with the property that for any pair of vertices u, v ∈ O there is a
shortest uv-path P in Γ such that every vertex P has at least d− δ neighbours in O.

Then, letting γ = γ(δ, k) = δ + δ(δ − 1) + δ(δ − 1)k−2, there exists a Cayley graph for G of
degree at most d− δ + γ(5

√
d+ 2), and diameter at most k.

Theorem 4.3.1 can be applied to reprove Theorems 4.1.1 and 4.2.1; see [3, Section 3]. In
both cases the proofs are considerably shorter than the original ones [5, 4], but (due to a larger
generality of Theorem 4.3.1) the bounds on generating sets of the corresponding Cayley graphs
are slightly worse in the O(

√
q) term. Nevertheless, the resulting Cayley graphs still approach

the Moore bound for diameters 2 and 3.



5 Generalisations and future work

In this chapter we explain why does the approach that works for construction of larger
Cayley graphs of diameter 2 and 3 does not carry over to an analogous construction of Cayley
graphs of diameter 5 from split Cayley hexagons. We also discuss possible future directions of
research, and we formulate some open problems.

5.1 Polarity graphs I(q)

In the previous chapter we saw that polarity graphs B(q) and A(q) can be used to construct
two families of Cayley graphs that asymptotically approach the Moore bound for diameters 2
and 3. In this section we look at polarity graphs I(q), the remaining of the three classes of
polarity graphs introduced in Subsection 2.1.5.

5.1.1 Cayley graphs of diameter 5

Let q = 32e+1 for some non-negative integer e, and recall that the polarity graph I(q) has
maximum degree q+1, diameter 5, and order q5+q4+q3+q2+q+1, and that Aut(I(q)) ∼= Ree(q).
It is tempting to consider the same approach as in [5] and [4] for constructing an in�nite sequence
of Cayley graphs of degree q+ o(q), diameter 5, and order q5− o(q5) as q →∞. The �rst (and
most important) step of this approach is to �nd a subgroup G of Aut(I(q)) regular on one of
its orbits of size q5 − o(q5). Unfortunately, by the classi�cation of maximal subgroups of Ree
groups (see [27, 26]), we know that Ree(q) has no subgroup of order O(q5) for q →∞, and thus
the approach that works for diameters 2 and 3 does not carry over to an analogous construction
for diameter 5.

5.1.2 Cayley graphs of diameter 4

Unlike the case of Aut(I(q)), the automorphism groups of B(q) (for q = 2e) and A(q) contain
a subgroup of order qk− o(qk), where k is the diameter of the corresponding polarity graph. In
the case of polarity graphs B(q), this subgroup is isomorphic to the one-dimensional a�ne group
over F = GF(q) represented as the semidirect product G = F+ o F ∗ with the multiplication
given by (a, b)(c, d) = (a+ bc, bd). In the case of polarity graphs A(q), this subgroup is formed
by 4 × 4 matrices M(r; a, b) de�ned in [4]. Both subgroups, which we denote by G2(q) and
G3(q), can be de�ned as a subgroup of the automorphism group of the corresponding polarity
graph stablising a vertex of degree q.
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Since both G2(q) and G3(q) are underlying groups of Cayley graphs that asymptotically
approach the Moore bound for diameters 2 and 3, it is natural to look at an analogously de�ned
subgroup of Ree(q). Namely, we are interested in the group G4(q) isomorphic to a subgroup
of Aut(I(q)) stabilising a vertex of degree q. (Again, all such subgroups are conjugate to each
other, and hence isomorphic.) Equivalently, G4(q) is isomorphic to a stabiliser in Ree(q) of an
absolute point of the polarity ρ (de�ned in Subsection 2.1.4). It turns out that G4(q) has order
q3(q − 1), the elements of G4(q) can be represented by quadruples (r; a, b, c) with r ∈ F ∗ and
a, b, c ∈ F , and the multiplication is given by (r; a, b, c)(s;x, y, z) = (rs; as + x, axθs + bsθ+1 +
y, ays+ csθ+2 + z− axθ+1s− bxsθ+1), where q = 32e+1 and θ is the Tits isomorphism of GF(q).
For further details, including the action of the elements of G4(q) on the points and lines of the
split Cayley hexagon H(q), we refer the reader to [46, Item 7.7.7].

The underlying reason why it is possible to construct Cayley graphs of degree q + o(q) and
diameter 2 or 3 for G2(q) and G3(q) is the following property of these groups.

Proposition 5.1.1. For each k ∈ {2, 3} and suitable q there exists a generating set S of order
q − 1 for Gk(q) such that S is closed under taking inverses, 1 /∈ S, and all but o(qk) elements
of Gk(q) can be written as a product of k elements of S for q →∞.

Given the obvious connection between the groups G2(q), G3(q) and G4(q), it is natural to
ask whether the analogue of Proposition 5.1.1 also holds for the latter:

Question 5.1.2. Does there exists a generating set S of order q − 1 for G4(q) such that S is
closed under taking inverses, 1 /∈ S, and all but o(q4) elements of G4(q) can be written as a
product of 4 elements of S as q →∞?

If one can �nd such set S, it could potentially lead to construction of Cayley graphs that
asymptotically approach the Moore bound for diameter 4. Note that this would also solve
Delorme's problem for diameter 4; as we mentioned in Subsection 2.2.3, the best available
lower bound on Delorme's limit superior for general graphs of diameter 4 is 1/4. Also note that
it would be equally interesting (from an asymptotic point of view) to �nd a set S with given
properties of size q + o(q), but in view of Proposition 5.1.1 we believe that the most promising
strategy is to restrict ourselves to generating sets of size q − 1.

A slightly tedious but straightforward method to �nd a suitable generating set S for the
group Gk(q) is to �nd an induced subgraph (of the corresponding polarity graph) isomorphic
to a Cayley graph C(G,X), and take S = X. Unfortunately, this can be done only if the
corresponding polarity graph contains an induced Cayley subgraph of degree q − 1 and order
|G|, which is impossible (even if we drop the assumption that the subgraph is induced and
Cayley) in the case when G = G4(q) :

Lemma 5.1.3. For any su�ciently large q the polarity graph I(q) contains no subgraph of
degree q − 1 and order q3(q − 1).

Note that Proposition 5.1.1 for k = 2 can be also proved by showing that the following
system of equations (which appeared in Construction 2.2.7) has a solution (x, y) ∈ F ∗×F ∗ for
all but o(q2) elements (r, s) ∈ G2(q) :

r = x+ x2y,

s = x2y2.
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Similarly, it can be shown that for all but o(q3) elements of G3(q), represented by matrices
M(x; y, z), there exist elements r, s, t ∈ F ∗ such that M(x; y, z) = M(r; a(r), 1)M(s; a(s), 1)
M(t; a(t), 1) or, equivalently, such that

x = rst,

y = a(r)st+ a(s)t+ a(t),

z = (a(r)st+ a(s)t)(a(s)t+ a(t))ω + 1,

which proves Proposition 5.1.1 for k = 3. This proof is unsurprisingly much more di�cult than
in the case when k = 2; see [2] for details.

The previous paragraph provides another perspective on how to approach Question 5.1.2.
Namely, we can choose some generating set S for G4(q), and try to show that all but o(q4)
elements of G4(q) can be written as a product of 4 elements of S. This is equivalent to showing
that a certain system of four equations has a solution in all but o(q4) cases. Using inspiration
from the case of G3(q), it is possible to �nd a few candidates for S. (By a candidate we mean
a generating set with q− 1 elements which is closed under taking inverses and does not contain
the identity element.) So far, however, we do not know any reliable method to determine for
which elements of G4(q) the corresponding system of equations has a solution.

5.1.3 General graphs of diameter 4 or 5

All known families of graphs that asymptotically approach the Moore bound for some diam-
eter are either polarity graphs B(q), A(q) and I(q), or their modi�cations. Hence an obvious
next step is to investigate discrete structures similar to these families of graphs. Since we
already know that the Moore bound can be asymptotically approached for diameters 2 and
3 by general, vertex-transitive, and even Cayley graphs, we are interested only in structures
similar to polarity graphs I(q). One possible approach is to look at the structures related to the
automorphism group of I(q), which is isomorphic to the Ree group Ree(q). Two such structures
are Ree geometries [23] and Ree unitals [29], latter of which we describe below.

Let G = Ree(q), let P be the set of all q3 + 1 Sylow 3-subgroups of G, and consider the
conjugation action of G on P . It can be shown that each involution of G has q+ 1 �xed points,
and that for any two distinct points there is a unique involution of G �xing both of them.
Hence we can construct a block design on the points of P whose blocks are the sets of �xed
points for each involution of G. The resulting 2-(q3 + 1, q + 1, 1) block design is called a Ree
unital. We hope that a thorough investigation of Ree unitals will help us to �nd a new family
of (possibly Cayley) graphs that asymptotically approach the Moore bound for diameter 5, or
maybe even 4. For further information on Ree unitals we refer the reader to [1].

5.2 Degree-diameter problem and generalised octagons

Recall that �nite generalised n-gons exist only for n = 3, 4, 6 or 8. As we have seen in the
previous chapters, generalised triangles, quadrangles and hexagons play a prominent role in the
degree-diameter problem. In contrast, there is not a single known construction (relevant to this
problem) based on generalised octagons. In this section we brie�y explain a reason behind this.
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The only known �nite generalised octagons are the Ree-Tits octagons O(q) of order (q, q2),
where q is an odd power of two, and their duals. (The dual of a geometry is a geometry obtained
by interchanging the roles of points and lines.) The Ree-Tits octagon O(q) has q10 +q9 + · · ·+1
points and q11 + q10 + · · ·+ 1 lines, and so the incidence graph L(q) of O(q) is a bipartite graph
of maximum degree q2 + 1 on q11 + 2q10 + 2q9 + · · · + 2 vertices. Moreover, by Lemma 2.1.4
we know that L(q) has diameter 8. There is no obvious way to turn this graph into a graph
of diameter 7 and order q7 + o(q7). Even if we succeeded, it seems to be almost certain that
the maximum degree in the resulting graph would be at least q2 + 1. (In which case, this
graph is not interesting for the degree-diameter problem.) Nevertheless, we believe that Ree-
Tits octagons are worth of investigation in the context of the degree-diameter problem. One
potential approach is to examine some other family of �nite generalised polygons of order (q, q2)
with simpler structure, and see if we can use it to construct large graphs of given maximum
degree and diameter. A good candidate for this is the family of orthogonal quadrangles Q(5, q);
see [46, Section 2.3].

5.3 Vertex-transitive closure of a graph

In Section 3.3 we saw that for q odd the polarity graph B(q) cannot be extended (by adding
extra edges) to a vertex-transitive graph of degree q + 1 or q + 3. An interesting question is
what is the smallest integer d for which there exists a d-regular vertex-transitive graph which
contains B(q) as a spanning subgraph. This leads to the following more general de�nition.

De�nition 5.3.1. A vertex-transitive closure of a graph Γ is a vertex-transitive supergraph of
Γ on the same vertex set. A vertex-transitive number of a graph Γ, denoted by dvt(Γ), is the
smallest integer for which there exists a dvt(G)-regular vertex-transitive closure of Γ.

We have the following for polarity graphs B(q) with q odd.

Theorem 5.3.2. For any odd prime power q ≥ 37 the vertex-transitive number of B(q) is at
least q + 5.

The problem of determining (or at least estimating) the vertex-transitive number of B(q)
appears to be quite interesting in the context of the degree-diameter problem. In particular,
if one can show that dvt(B(q)) = q + o(q), then this gives a new family of vertex-transitive
graphs that asymptotically approach the Moore bound for diameter 2. There are many other
interesting questions related to vertex-transitive closures of graphs, and even though they are
mostly not related to the degree-diameter problem, we include a few of them here.

Question 5.3.3. Is there a constant m such that every planar graph of maximum degree d has
a vertex-transitive closure of degree at most md?

Question 5.3.4. What is the smallest positive integer dn for which there exists a graph Γ of
order n such that the maximum degree in Γ is dn, and the only vertex transitive closure of Γ is
the complete graph Kn?
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