
Mgr. Pavol Jánoš

Summary of PhD dissertation

Graph coverings in the degree-diameter problem and in
the degree-girth problem

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics.

Bratislava, 2021



The submitted PhD dissertation has been prepared at the Department of Mathematics and Descriptive
Geometry, Faculty of Civil Engineering, Slovak University of Technology in Bratislava.

Author: Mgr. Pavol Jánoš
Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, STU, Bratislava

Supervisor: doc. RNDr. Jana Šiagiová, PhD.
Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, STU, Bratislava

Referees: prof. RNDr. Martin Knor, PhD.
Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, STU, Bratislava

doc. Mgr. Petr Kovář, PhD.
Department of Applied Mathematics
Faculty of Electrical Engineering and Computer Science, VSB, Ostrava

doc. RNDr. Martin Mačaj, PhD.
Department of Algebra, Geometry and Mathematics Education
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava

PhD dissertation summary was submitted on 18 Jun 2021.

PhD dissertation defence will be held online on at am/pm.

prof. Ing. Stanislav Unčík, PhD.
Dean of the Faculty of Civil Engineering



Abstrakt

V teórii grafov medzi rozsiahlo študované problémy patrí problém stupňa a prie-
meru, ako aj problém stupňa a obvodu. V prvom prípade je úlohou nájst’ grafy
maximálneho rádu nd,k, ktoré majú daný maximálny stupeň vrcholu d a daný prie-
mer k. V druhom prípade ide o nájdenie grafov minimálneho rádu n[d,g], pričom
minimálny stupeň vrchola je d a obvod grafu je g. V obidvoch úlohách sú známe
teoretické hranice, ktoré nie je možné prekročit’, tzv. moorovské hranice. Bolo doká-
zané, že tieto hranice sa nadobúdajú iba pre zriedkavé hodnoty dvojíc (d, k) a [d, g].
Vzhl’adom na tento skutkový stav sa rozsiahlo študujú rôzne konštrukcie ‘vel’kých’
grafov daného stupňa a priemeru na jednej strane a ‘malých’ grafov daného stupňa
a obvodu na strane druhej.

V našej práci sme sa sústredili na špeciálny typ takých konštrukcií, a to po-
mocou regulárnych nakrytí grafov. Práca obsahuje tri typy výsledkov. Po prehľade
aktuálnych poznatkov uvádzame nové horné odhady pre rády grafov daného stupňa
a priemeru dva, skonštruovaných pomocou zdvihov istých špeciálnych typov gra-
fov s napät’ovými priradeniami v abelovských grupách. Neskôr sa v práci venujeme
klietkam obvodu 6 a im príbuzným grafom a ukazujeme, že tieto grafy sú regulár-
nymi zdvihmi dipólov. Podobným spôsobom tiež študujeme grafy príbuzné klietkam
obvodu 8 spolu s relevantnými maticovými grupami a súvislost’ami s tzv. G-grafmi.
Napokon pomocou analýzy grúp automorfizmov ukazujeme, že istá d’alšia trieda
grafov odvodených od klietok obvodu 8 nepripúšt’a konštrukciu pomocou zdvihov
dipólov.
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1 Introduction

Interest in finding and construction of graphs with given properties dates to 1950’s, where
communication networks and data organization or the flow of computation were modelled by
various types of graphs. The limited hardware and resources in building such a network helped
to form two of the well known problems in extremal graph theory, namely the degree-diameter
problem and the degree-girth problem.

The aim of the degree-diameter problem is to find graphs of largest order nd,k subject to
maximum degree d and diameter k. The degree-girth problem deals with finding the smallest
order n[d,g] of a graph of minimum degree d and girth g. In both problems there are known
theoretical bounds that can not be exceeded, called the Moore bounds. It is also known that
these bounds can be achieved only for rare pairs of (d, k) and [d, g]. Due to these facts there
emerged a stream of research into diverse construction methods to produce ‘large’ graphs of
given degree and diameter on the one hand, and ‘small’ graphs of given degree and girth on
the other hand.

In our dissertation we focused on special types of such constructions, namely, on regular
coverings of graphs, presenting three main types of results. We begin with an overview of cur-
rent results in Chapter 2. In Chapter 3 we provide new upper bounds on orders of graphs in
the degree-diameter problem for diameter two, constructed by lifting special types of graphs by
means of voltage assignments in Abelian groups. Chapter 4 is devoted to cages and near-cages
of girth 6 and we show there that these graphs arise as regular lifts of dipoles. In Chapter 5
we similarly study near-cages of girth 8 together with relevant matrix groups and the corres-
pondence with the so-called G-graphs. Finally, in Chapter 6 with the help of an analysis of
automorphism groups we show that a known class of graphs derived from cages of girth 8 are
not isomorphic to any regular lifts of dipoles.
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2 Background

2.1 The degree-diameter problem

For given integers d and k, the degree-diameter problem is to determine the largest number
of vertices nd,k in a graph (called the order of a graph) of maximum degree d and given diameter
k, and such a graph will be called a (d, k)-graph. This problem was introduced in 1960 by A.
J. Hoffman and R. R. Singleton [21] and since then, research in this area has taken two main
approaches:

• Proofs of non-existence of graphs of order close to the Moore bound - leading to upper
bounds on the nd,k.

• Constructions of large graphs for given d and k - furnishing better lower bounds on nd,k.

The Moore bound
There is a straightforward upper bound on the largest possible order of a (d, k)-graph, called

the Moore bound and denoted by M(d, k), which arises from spanning tree structure. If d = 1
then k = 1 andM(1, 1) = 2; the order of a star, with central vertex of degree d, isM(d, 1) = d+1
for all d ≥ 1; and the order of a path of length 2k is M(2, k) = 2k + 1 for all k ≥ 1. Then for
any d ≥ 3 and k ≥ 2 there is the following formula

M(d, k) = 1 + d+ d(d− 1) + . . .+ d(d− 1)k−1 = 1 + d
(d− 1)k − 1

d− 2
. (2.1)

For the largest order nd,k of a (d, k)-graph it holds that nd,k ≤M(d, k) for all d, k ≥ 1.
Graphs for which nd,k = M(d, k) were called in [21] the Moore graphs, and it is known that

they are necessarily regular of degree d. The authors in [21] also proved that for diameter k = 2
Moore graphs exist only for d ∈ {2, 3, 7}, excluding all other values of d ≥ 2 except d = 57. For
diameter 3 they showed that the unique Moore graph is the 7-cycle.

The absence of Moore (d, k)-graphs for all but a few values of d, k was proved by Damerell
[12] and Bannai with Ito [5], which independently and using different approaches demonstrated
that no Moore (d, k)-graphs exist for d ≥ 3 and k ≥ 3.

Bounds in the degree-diameter problem
The well known de Bruijn digraphs give the lower bound nd,k ≥ (d/2)k. The Kautz graphs

[22] imply for k ≥ 3 and even d ≥ 4 a better lower bound

nd,k ≥
(
d

2

)k
+

(
d

2

)k−1

.

Further improved comes from Canale and Gómez [11] to

nd,k ≥
(

d

1, 57

)k
,
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for k congruent to −1, 0, or 1 (mod 6) and an infinite set of degrees for each such k.
For diameter 2 remarkable lower bound follows from Brown graphs [10], which have maxi-

mum degree q + 1, q a prime power

nd,2 ≥ d2 − d+ 1

for each d such that d−1 is a prime power. By [14, 13] it is known that this can be improved by
adding 1 to the right-hand side in the case when q is a power of 2. The bound can be extending
by steadily improving number-theoretic results about distributions of primes to nd,2 ≥ d2−o(d2)
with a smaller and smaller o(d2) term.

Vertex-transitive and Cayley (d, k)-graphs
For d ≥ 3 and k ≥ 2 let vtd,k and Cayd,k be the largest order of a vertex-transitive and

a Cayley graph, respectively, of degree d and diameter k.
The previous facts imply that in this range of d and k the only Moore graphs that are

vertex-transitive are the Petersen and the Hoffman-Singleton graph, which implies that vt3,2 =
10 = M(3, 2) and vt7,2 = 50 = M(7, 2), while vtd,k < M(d, k) for all the remaining pairs (d, k)
in our range. It is also known by G. Exoo, R. Jajcay, M. Mačaj and J. Širáň [17] that for any
fixed d ≥ 3 and an arbitrarily large positive integer c it holds that vtd,k ≤M(d, k)−c for almost
all diameters k.

For Cayley graphs the current asymptotically best results are due to J. Šiagiová and J. Širáň
[31] for diameter 2 by proving that Cayd,2 ≥ d2 − o(d2) for an infinite increasing sequence of
degrees d, and to M. Bachratý, J. Šiagiová and J. Širáň [3] by showing that Cayd,3 ≥ d3− o(d3)
for another sequence of degrees.

Considering vertex-transitive but non-Cayley graphs the current records were set by McKay,
Miller and Širáň [25] by showing that for all degrees d of the form (3q−1)/2, where q is a prime
power congruent to 1 (mod 4), there are vertex-transitive non-Cayley graphs of diameter 2,
degree d and order

8

9

(
d+

1

2

)2

. (2.2)

2.2 The degree-girth problem

For given integers d and g, the degree-girth problem is to find the smallest number of vertices
n[d,g] in a graph of minimum degree d and given girth g, and such a graph will be called a [d, g]-
graph. Then a [d, g]-graph of the smallest possible order is a [d, g]-cage. Introduction of this
problem is dated to 1947 by W. T. Tutte [32], and a summary of the development can be found
in the dynamic survey [15] by G. Exoo and R. Jajcay.

Bounds in the degree-girth problem
Lower bounds on n[d,g] are obtained in a way similar to the upper bound in the degree-

diameter problem, but one needs to consider parity of the girth. If g is odd, the lower bound
on the order of [d, g]-graph is:

n[d,g] ≥ 1 + d
(d− 1)(g−1)/2 − 1

d− 2
for d ≥ 3 and odd g ≥ 3 . (2.3)
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The case of even girth leads to the lower bound:

n[d,g] ≥ 2
(d− 1)g/2 − 1

d− 2
for d ≥ 3 and even g ≥ 4 . (2.4)

The expressions on the right-hand side of both (2.3) and (2.4) are called the Moore bounds
for the degree-girth problem.

Finite geometries and generalized k-gons
A Finite geometry consists of a finite set of points P and a finite set of lines L together with

specifications about the points forming a particular line and the lines intersecting in a particular
point. Provided that P and L are disjoint, this can be completely described by the associated
bipartite point-line incidence graph, where in any finite bipartite graph one may interpret the
two parts in its bipartition as sets of points and lines of a finite geometry. Such a finite bipartite
graph of diameter k and girth 2k will be called a generalized k-gon, see e.g. [19]. A generalized
polygon is called thick if all its vertices have degree at least 3, and it is known by [18] that
a thick generalized k-gon can exist only if k ∈ {3, 4, 6, 8}.

If the bipartite graph defining a thick generalized k-gon is assumed to be regular, the order
of such a graph is necessarily equal to the corresponding Moore bound, thus such graphs will
automatically be [d, 2k]-cages. For k = 3 there exist for any d such that d − 1 is a prime
power, say q, generalized triangles of order 2(d2 − d + 1) = 2(q2 + q + 1) by (2.4). In the
case of k = 4 the generalized quadrangles for any d such that d − 1 = q have by (2.4) order
2(d3 − 2d2 + 2d) = 2(q3 + q2 + q + 1).

For the remaining values of k we just note that the situation with regular generalized hexa-
gons (for k = 6) is much more complicated, but they also exist under the same condition on d
as above, while regular generalized octagons (for k = 8) do not exist at all.

The so far best available upper bound for by F. Lazebnik, D. Ustimenko and A. Woldar [23]
can be stated as follows: If d ≥ 3, g ≥ 5 and q is the smallest odd prime power such that d ≤ q,
then

n[d,g] ≤ 2dq
3
4
g−α

where α = 4, 11/4, 7/2, 13/4 for g ≡ 0, 1, 2, 3 mod 4, respectively.
Note here that as in the degree-diameter problem, in the degree-girth one the gaps between

lower and upper bounds are large. For example, for any fixed odd girth g ≥ 5 and d → ∞
the lower bound (2.3) is asymptotically ∼ d(g−1)/2 while the best upper bound of [23] is asymp-
totically ∼ 2d

3
4
g−c for some constant c.

Vertex-transitive and Cayley of the [d, g]-graphs
For d ≥ 3 and g = 5 the only two vertex-transitive cages attaining the (lower) Moore bound

are the Petersen graph and the Hoffman-Singleton graph. In the case of g = 6 we mention the
various constructions of graphs of order ‘close’ to the Moore bound on n[d,6] for infinitely many
degrees d by E. Loz, M. Mačaj, M. Miller, J. Šiagiová, J. Širáň and J. Tomanová [24], that will
be relevant for us in Section 4.

Cages of girth g ≥ 5 attaining the (lower) Moore bound do exist for g = 6, 8 and 12, and
vertex-transitive ones for g = 6 and 8. For larger g, however, the situation is not so favourable,
due to an important result of N. L. Biggs [6] showing that for every odd d ≥ 3 there is an
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infinite set of values of g such that n[d,g] differs from the (lower) Moore bound for the pair [d, g]
by at least g/d.

2.3 Voltage assignments and lifts

In this section we explain the basics about the graph lifting technique using the so-called
‘voltage assignments’, introduced in [20], which we then apply to constructions of diameter-two
lifts of special base graphs in the Section 3.

If Γ is a graph (possibly with loops and parallel edges), then every edge h of Γ can be viewed
as consisting of two oppositely directed darts x, x−1, and we write h = {x, x−1}. Let V (Γ) and
D(Γ) be the vertex set and the dart set of Γ. Given a group G, a voltage assignment on Γ in
G is a mapping α : D(Γ)→ G such that α(x−1) = (α(x))−1 for every x ∈ D(Γ). The lift Γα of
Γ by α has vertex set V (Γα) = V (Γ) × G and dart set D(Γα) = D(Γ) × G, and for any dart
x of D(Γ) from a vertex u to a vertex v and for any g ∈ G there is a dart (x, g) in Γα from the
vertex (u, g) to the vertex (v, gα(x)); the darts (x, g) and (x−1, gα(x)) form an edge of Γα. If
G is an Abelian group, then the lift will be called Abelian. The original graph Γ is called the
base graph of the lift.

Given a base graph Γ and a voltage assignment α on Γ in a group G and a walk W =
x0x1 . . . xt in Γ (that is, a sequence of darts such that the terminal vertex of xi−1 is the initial
vertex of xi for i ∈ {1, . . . , t}), the voltage α(W ) is simply the product α(x0)α(x1) . . . α(xt).

The following lemmas 2.1 and 2.2 help us to control diameter and girth in the lift.

Lemma 2.1. Let α be a voltage assignment on a connected graph Γ in a group G, let k be
a positive integer. Then, the lift Γα has diameter at most k if and only if for any pair of
vertices u, v of Γ, and for every element g of the group G there is a u → v walk W in Γ of
length at most k such that α(W ) = g.

Lemma 2.2. [30] The girth of a lift Γα is equal to the length of a shortest closed non-reversing
walk W in Γ of net voltage 1G.



3 Abelian lifts of graphs

In the paper [29] Šiagiová showed that the McKay-Miller-Širáň graphs presented in Section
2.1 of order (2.2) can be constructed also as lifts of dipoles. Further examination of Abelian lifts
of dipoles in the subsequent paper [30] resulted the upper bound in the following Proposition 3.1.

Proposition 3.1. [53] Let D be a dipole with both vertices of the same degree d and let α be
a voltage assignment on D in an Abelian group A, such that the lift Dα has diameter two. Then,
the order of Dα is bounded above by

4(10 +
√

2)

49
(d+ 0, 34)2 ≈ 0, 932(d+ 0, 34)2 .

This result shows that Abelian lifts of dipoles cannot possibly approach the Moore bound
for diameter 2 asymptotically. Nevertheless, Proposition 3.1 still leaves an open possibility to
think of beating the the quantity of 8

9

(
d+ 1

2

)2 ≈ 0.889d2, the orders of the McKay-Miller-Širáň
graphs, which motivated our research into Abelian lifts.

Lifting n-poles and (n, n)-bipoles
A natural generalization of dipoles are the complete multigraphs Kn(m, `, s) of order n ≥ 2

and degree d = (n − 1)m + 2` + s, with m parallel edges between any two adjacent vertices,
` loops and s semi-edges attached at each vertex. These graphs are regular and we will call them
n-poles. The second kind of base graphs that generalize dipoles retaining the bipartiteness are
complete bipartite multigraphs Kn,n(m, `, s) for n ≥ 2, also with edge multiplicity m, ` loops
and s semi-edges at every vertex; such graphs will be called (n, n)-bipoles ; they are again regular,
of degree d = mn+ 2`+ s.

In this section we present preliminary upper bounds on the orders of diameter-two lifts of
n-poles and (n, n)-bipoles with voltages in Abelian groups by applying Lemma 2.1.

The following Proposition 3.2 provide the preliminary upper bound on the order of Γα as
a lift of an n-pole, described as a minimum of two polynomials obtained by examination of the
number of distinct voltages on the closed u → u and u → v walks of length at most 2 (for
distinct u, v ∈ V (Γ)) in the base graph, and multiplied by n.

Proposition 3.2. [J4] Let Γ = Kn(m, `, s) and let α be a voltage assignment on Γ in an Abelian
group A such that the lift Γα has diameter two. Then the order of Γα is bounded above by

ω1(m, `, s) = n ·min{(n− 1)m(m− 1) + 2`(`+ 1) + 2`s+
s(s+ 1)

2
+ 1,

(n− 2)m2 + (4`+ 2s+ 1)m}.
(3.1)

A similar approach leads to the preliminary upper bound on the order of a lift of an (n, n)-
bipole, as provided in the next Proposition 3.3.

6
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Proposition 3.3. [J4] Let Γ = Kn,n(m, `, s) for n ≥ 2 and let α be a voltage assignment on
Γ in an Abelian group A such that the lift Γα has diameter two. Then the order of Γα is bounded
above by

ω2(m, `, s) = 2n ·min{nm(m− 1) + 2`(`+ 1) + 2`s+
s(s+ 1)

2
+ 1, (4`+ 2s+ 1)m,nm2}. (3.2)

Observe that the ‘min’ terms in (3.1) and (3.2) also give an upper bounds on the orders of
the corresponding Abelian voltage groups.

Now we turn the results stated above in the Propositions 3.2 and 3.3 into more explicit
estimates on the order of diameter-two Abelian lifts of an n-pole and an (n, n)-bipole. We
begin with n-poles, where the resulting upper bound in terms of d is derived into the following
theorem:

Theorem 3.1. [J4] Let n ≥ 2 be an integer and let α be a voltage assignment on an n-pole
Γ of degree d in an Abelian group such that the lift Γα has diameter 2. Then the order of Γα is
bounded above by

n4 + 4n3 + (2
√

2− 1)n2 − (2
√

2 + 2)n

(n2 + 2n− 1)2
d2 +O(d3/2)

as d→∞.

This result may be regarded as an improvement over the Moore bound for graphs of degree
d and diameter two obtained as lifts of n-poles of degree d in an Abelian group. In the case
where n = 2 we obtain, up to the ‘big O’ term, the same upper bound as in [30]. For n = 3 the
upper bound from the Theorem 3.1 gives approximately 87+6

√
2

98
d2 +O(d3/2)

.
= 0.974d2 +O(d3/2)

as d→∞. This behavior is, of course, expected, since the limit of the leading term in the upper
bound in Theorem 3.1 tends to 1 as n→∞.

In what follows we provide an upper bound on the order of an Abelian diameter-two lift of
an (n, n)-bipole:

Theorem 3.2. [J4] Let n ≥ 2 be an integer and let α be a voltage assignment in an Abelian
group on an (n, n)-bipole Γ of degree d such that the lift Γα has diameter 2. If d ≥ 11, then the
order of Γα is bounded above by

8

9

(
d+

1

2

)2

.

Theorem 3.2 shows that for every d ≥ 11 and n ≥ 2 the upper bound on the order of Abelian
lifts of complete bipartite multigraphs based on Kn,n of diameter 2 is 8

9

(
d+ 1

2

)2. Since by (2.2)
this bound is equal to the order of McKay-Miller-Širáň graphs [26, 29], the upper bound is
sharp. We have found this fact surprising.

The result of the Theorem 3.2 also has the consequence which shows that Abelian lifts of
dipoles and (n, n)-bipoles for n ≥ 2 lead to different upper bounds, and we conclude with
mentioning that our upper bound

4(10 +
√

2)

49
(d+ 0, 35)2 ≈ 0, 932(d+ 0, 35)2 ,

obtained from lifts of dipoles of odd degrees d ≥ 7 if both loops as well as semi-edges are
allowed, is mildly better than the one presented in the Proposition 3.1.



4 Near-cages of girth 6 from lifts of dipoles

According to the facts about existence of cages of girth 6 and degree d from the Section
2.2 it is of interest to construct families of ‘small’ [d, 6]-graphs also for other sets of degrees.
This was considered by Abreu et al. [2], who have shown that for any odd prime power q there
exist connected, bipartite graphs of girth 6, degrees q − i for i ≤ 2, and orders 2q2, 2q(q − 1),
2(q − 1)2 and 2(q2 − 1). Later, Loz et al. [24] gave a different construction of these graphs,
based on lifting special complete bipartite graphs with voltage assignments in finite fields. In
the sense of the conjecture by Pisanski et al. [27] that all g-cages where g is an even integer
are bipartite graphs, it is natural to investigate constructions of the previous graphs by lifting
from bipartite graphs that are smallest possible, that is, from dipoles.

In the next Section 4.1 we present our results regarding constructions of such graphs based
on coverings of graphs by voltage assignments, explained in Section 2.3. In these constructions
we also refer to a perfect difference set, that is a set S ⊂ Cq2+q+1 for any prime power q, where
for each a ∈ Cq2+q+1, a 6= 0 there exists exactly one ordered pair s, t ∈ S such that a = s− t.

4.1 Constructions of small regular graphs of girth 6 by lif-
ting dipoles

Let q be a power of an odd prime and let F = GF (q) be the Galois field of order q. We
denote the additive group (F,+) and the multiplicative group (F \ {0}, ·) of F by F+ and
F ∗, respectively. Let Γ be the dipole with vertex set V = {u, v} and q parallel edges between
vertices u and v. We will consider each of those parallel edges to be directed from u to v.

Now we provide our lifting constructions, published in [J3] of graphs from the previous
section examined by Abreu et al. [2], and reexamined by Loz et al. [24], arising from a dipole
Γ, where most of our voltages will be pairs of elements of F+ and F ∗.

Construction (Γα). Define a voltage assignment α on each dart x ∈ F of a dipole of degree
q in the additive group F+ × F+ by letting α(x) = (x, x2); x ∈ F . The corresponding lift
denoted by Γα has order 2q2.

Construction (Γβ). Let β be a voltage assignment on each dart x ∈ F ∗ of a dipole of degree
q − 1 in the group F+ × F ∗, where β(x) = (x, x); x ∈ F ∗. Then the corresponding lift Γβ has
order 2q(q − 1).

Construction (Γγ). Let γ be a voltage assignment on each dart x ∈ F ∗/{1} of a dipole of
degree q − 2 in the group F ∗ × F ∗ defined as γ(x) = (x − 1, x); x ∈ F ∗/{1}. We denote the
resulting lift of order 2(q − 1)2 by Γγ.

Construction (Γδ). Let F̃ be an extension field of F , such that F̃ = GF (q2) > F . Define
a voltage assignment δ on each dart x ∈ F̃ of a dipole of degree q by letting δ(x) = x+ω; x ∈
F, ω ∈ F̃ ∗/F ∗, ω2 ∈ F ∗. Then the resulting lift Γδ has order 2(q2 − 1).

8
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Construction (Γε). Let ε be a voltage assignment on each dart x; x ∈ {1, 2, . . . , q + 1} of
a dipole of degree q+ 1 in the perfect difference set S ⊂ Cq2+q+1; S = {s1, s2, . . . , sq+1} defined
as ε(x) = sx. Denote the corresponding lift of order 2(q2 + q + 1) by Γε.

It is necessary to prove that the lifts in these constructions have girth g = 6, which is stated
in the following Proposition 4.1.

Proposition 4.1. [J4] The lifts Γα, Γβ, Γγ, Γδ and Γε do not contain cycles of length less than
or equal to five.

4.2 Lifting a dipole by a subgroup of a Heisenberg group

In the following Proposition 4.2, we provide a description of another lifting construction
of [q, 6]-graph Γα of order 2q2 from the previous section, as a lift of a dipole with voltage
assignment from a Heisenberg group.

For any prime power q, the Heisenberg group over the Galois field F = GF(q) is the linear
group formed by matrices of the form 1 a c

0 1 b
0 0 1

 , a, b, c ∈ F (4.1)

with the usual matrix multiplication as the group operation.

Proposition 4.2. [J5] Let q be a prime power and let H be the subgroup of the Heisenberg
group over F = GF(q) consisting of the matrices

E(a, b) =

 1 a b
0 1 a
0 0 1

 , a, b ∈ F .

Let Γ be a dipole with vertices u, v joined by q parallel darts {ei, i ∈ F} indexed by elements of
F . Let κ : D(Γ)→ H be the voltage assignment on the dipole given by

κ(ei) = E(i, 0) =

 1 i 0
0 1 i
0 0 1

 .

Then the lift Γκ is a [q, 6]-graph of order 2q2.

Proposition 4.2 is, in the special case when q is a prime, an extension of the construction
given in [9] in terms of the so-called G-graphs.



5 Near-cages of girth 8 and related results

5.1 A family of near-cages of girth 8 from lifting a dipole

In this section we show that the construction of near-cages of girth 6, a prime-power de-
gree q and order 2q2 from Proposition 4.2 generalizes for odd q to girth 8. The extension is
possible due to the existence of a ‘favourable’ subgroup of a 4-dimensional matrix version of
the Heisenberg group.

Let q be an odd prime power and let Kq be the group formed by the following 4-dimensional
matrices over F :

L(a, b, c) =


1 a a(a− 1)/2 c
0 1 a b
0 0 1 a
0 0 0 1

 ; a, b, c ∈ F .

Note that the group Kq has order q3. Now we provide our result concering the lifts of dipoles
with voltages in Kq.

Proposition 5.1. [J5] For an odd prime power q let Kq be the group introduced above. Let Γ be
a dipole with vertices u, v joined by q parallel darts {ei, i ∈ F} indexed by elements of F . Let
λ : D(Γ)→ Kq be a voltage assignment defined by

α(ei) = L(i, 0, 0) =


1 i i(i− 1)/2 0
0 1 i 0
0 0 1 i
0 0 0 1

 .

Then the lift Γλ is a [q, 8]-graph of order 2q3.

5.2 G-graphs and lifts of dipoles

Another family of graphs we are interested in are called G-graphs, introduced in [7]. Let
G be a group and S = {s1, s2, . . . , sn} be a set of elements such that G = 〈S〉. The G-graph
Φ(G,S) is a graph with the vertex set V (Φ) = {〈s〉g; s ∈ S, g ∈ G}, where 〈s〉g is the right
coset of the cyclic subgroup 〈s〉 generated by s, containing g. Two different vertices 〈s1〉g and
〈s2〉h are adjacent if and only if the intersection 〈s1〉g ∩ 〈s2〉h is non-empty.

It follows that Φ(G,S) is n-partite with n = |S|. Let o(s) denote the order of the element s,
then since o(s1) = o(s2) = . . . = o(sn) the graph Φ is regular of degree o(s)(|S| − 1) with o(s)
loops at each vertex 〈s〉g. The G-graph with all loops removed will be denoted by Φ̃(G,S).

We mention the connection between Cayley graphs and G-graphs, proved in [8]:

Lemma 5.1. Let L(Φ̃(G,S)) be the line graph associated with Φ̃, that is a graph having vertices
the edges of Φ̃ and two vertices in L are adjacent if and only if the corresponding edges in Φ̃
are incident. Then for generating set S = {s1, s2} such that 〈s1〉 ∩ 〈s2〉 = {e} it holds that
L(Φ̃(G,S)) ∼= X(G,A), where A = (〈s1〉 ∪ 〈s2〉) \ {e}.

10
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Now we state our result pointing to the relation between G-graphs and lifts of dipoles.

Theorem 5.1. [J5] Let G = 〈a, b〉 be a group generated by two elements a and b of the same
order k such that 〈a〉 ∩ 〈b〉 = {e}. Further, let H be such a subgroup of G for which H ∩ 〈a〉 =
H ∩ 〈b〉 = {e} and 〈a〉H = 〈b〉H = G. Then the G-graph Φ(G, {a, b}) can be described as a lift
of dipole with voltage group H and voltage assignment such that h ∈ H is a voltage on the dart
from u to v if and only if h−1 ∈ 〈a〉〈b〉.

5.3 An isomorphism from the Heisenberg group onto
a Bamberg-Giudici group

Let p ≥ 5 be a prime number. According to the definition of the Heisenberg group in the
Section 4.2, let Hp be the Heisenberg group modulo p, which has representation:

Hp = 〈x, y, z | xp = yp = zp = 1, xz = zx, yz = zy, zyx = xy〉.

This group can be also identified with the set of 3× 3 matrices
 1 a c

0 1 b
0 0 1

 | a, b, c ∈ GF (p)


together with classical matrix-multiplication. To see the correspondence between these two
representations an arbitrary element of Hp can be expressed in a unique way in the form
zcybxa, for suitable generators x, y, z.

In the paper [4] the authors define a group P of order q3, where q is an odd prime power.
In the special case when q = p is an odd prime, the group P (of order p3) can be described in
the form

P = {ta,b,0 · θα | a, b, α ∈ GF (p)} ,
where

ta,b,0 =


1 0 0 0
0 1 0 0
b 0 1 0
a b 0 1

 and θα =


1 0 0 0
−α 1 0 0
−α2 α 1 0

0 0 α 1

 ,

and the group-operation is the classical matrix-multiplication over GF (p).
Now we define a mapping ϕ : Hp → P as follows:

ϕ(x) = θ1/2, ϕ(y) = t0,1,0, ϕ(z) = t1,0,0.

It is easy to check that elements ϕ(x), ϕ(y) and ϕ(z) are elements of order p. Let ε = 1/2 and
extend this mapping to an arbitrary element of Hp by letting

ϕ(zcybxa) = ϕc(z)ϕb(y)ϕa(x) = tc,0,0 · t0,b,0 · θaε = tc,b,0 · θaε ,

where a direct calculation shows that

ϕ(zcybxa) · ϕ(zwyvxu) = ϕ(zc+w+avyb+vxa+u) = ϕ(zcybxa · zwyvxu).

This implies that ϕ is an isomorphism between the groups Hp and P .



6 Automorphisms of a near-cages of girth 8

In this Chapter we focus on a specific case of near-cages of girth 8 of which we show that they
are neither regular lifts of one-vertex graphs (i.e., Cayley graphs) nor regular lifts of dipoles.

The family of [q, 8]-graphs Υq

The family Υq of [q, 8]-graphs are obtained as induced subgraphs of [q+1, 8]-cage as follows.
Let P be a chosen point and ` be a chosen line of such a generalized quadrangle. It is known
that the vertices in a [q + 1, 8]-cage that are at distance at least 3 from both P and ` induce a
[q, 8]-graph of order 2q3 if (P, `) is a flag (an incident point-line pair), and of order 2q3 − 2q if
(P, `) is an anti-flag (a non-incident point-line pair).

Now we provide our description of Υq by neighbourhoods. Let q be an odd prime power.
Let us choose the point P = (%, %, %)0 ∈ V (Γq) and the line ` = (0, 0, 0)1 ∈ V (Γq). It is easy to
check that P is not incident to `, and thus dΓq(P, `) = 3, since the diameter of Γq is 4 and the
distance between any point and line is odd. The second closed neighbourhoods are:

N2
Γq

[P ] = {(%, %, %)0, (%, x, y)0, (%, %, x)1 : x ∈ Fq ∪ {%}, y ∈ Fq}
N2

Γq
[`] = {(x, 0, 0)0, (%, 0, 0)0, (0, x, 0)1, (%, 0, x)1, (%, %, 0)1, (y,−yx, y2x)1 : x, y ∈ Fq}.

Let Υq be the subgraph of Γq induced by V (Υq) = V (Γq) \ (N2
Γq

[P ] ∪N2
Γq

[`]). Thus, the graph
Υq contains q3 − q points and q3 − q lines corresponding to V0 and V1, respectively:

V0 = {(x, y, z)0, x, y, z ∈ Fq} \ {(x, 0, 0)0 : x ∈ Fq},
V1 = {(%, j, k)1 : j, k ∈ Fq, j 6= 0} ∪ {(i, j, k)1 : i, j, k ∈ Fq, ij + k 6= 0}.

The edge set of Υq can be described with the help of neighbourhoods as follows:

NΥq((x, 0, z)0) = {(r,−rx, r2x+ z)1, r ∈ Fq}, for all x, z ∈ Fq, z 6= 0;

NΥq((x, y, z)0) = {(r, y − rx, r2x− 2ry + z)1, r ∈ Fq, r 6= y−1z}∪
∪ {(%, y, x)1}, for all x, y, z ∈ Fq, y 6= 0.

Thus, the graph Υq is regular of valency q.
Further, let us define the following subsets of vertices of Υq.

O1 = {(x, y, 0)0 : x, y ∈ Fq, y 6= 0}
O2 = {(x, y, z)0 : x, y, z ∈ Fq, z 6= 0}
O3 = {(0, j, k)1 : j, k ∈ Fq, k 6= 0}
O4 = {(i, j, k)1 : i, j, k ∈ Fq, i 6= 0, ij + k 6= 0} ∪ {(%, j, k)1, j, k ∈ Fq, j 6= 0}.

Clearly, V0 is a disjoint union of O1 and O2, while V1 is a disjoint union of O3 and O4.
The basic facts about these sets can be summed up as follows.

Corollary 6.1. [J6] There is no automorphism of Υq mapping a vertex from O1∪O2 to a vertex
in O3 ∪O4, and vice versa.

12
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Corollary 6.2. [J6] Let q > 3 be an odd prime power. Then the diameter of Υq is equal to 6.

Corollary 6.3. [J6] Let G be the full group of automorphisms of the graph Υq. Then G has at
least four orbits on V (Υq).

From Corollary 6.3 the main result of this section follows as a consequence.

Theorem 6.1. [J6] The graph Υq cannot be obtained as a Cayley graph, nor as a lift of a dipole.

Since the group of automorphisms of Υq has at least four orbits, none of its subgroups can
act regularly, or semi-regularly with two orbits on the set of vertices, therefore Υq is neither
a Cayley graph, nor a lift of a dipole.

Automorphisms of the graph Υq

In this section we describe several mappings on V (Υq) and we show that they all are auto-
morphisms of the graph Υq.

For all α, β ∈ Fq, α 6= 0, let us define the mapping ϕα,β : V (Υq)→ V (Υq) as follows:

ϕα,β((x, y, z)0) = (αx+ β, αy, αz)0,

ϕα,β((i, j, k)1) = (i, αj − βi, αk + βi2)1

ϕα,β((%, j, k)1) = (%, αj, αk + β)1.

By noticing that ϕα,β is closed on V0 and on V1, a routine computations show that ϕα,β is
a bijective mapping on V (Υq), and that the set

H = {ϕα,β : α, β ∈ Fq, α 6= 0}

is closed under the operation ◦ of composition of mappings. We conclude that (H, ◦) is a group
isomorphic to the affine linear group AGL1(q).

In Υq there are just two types of edges. Consider first an edge e of type {(i, j, k)1, (x, ix +
j, i2x + 2ij + k)0}, where i, j, k, x ∈ Fp and ij + k 6= 0, which image under ϕα,β is an edge in
Υq. On the other hand, an edge of type {(%, j, k)1, (k, j, x)0}, where j, k, x ∈ Fq and j 6= 0 is
mapped to the pair {(%, αj, αk + β)1, (αk + β, αj, αx)0} which, again, is an edge of Υq. Thus,
H ≤ Aut(Υq).

For all α, β ∈ Fq, α 6= 0, we define the mapping σα,β : V0 → V0 as follows:

σα,β((x, y, z)0) =

(
x+

2β

α
y +

β2

α2
z, αy + βz, α2z

)
0

.

After showing that the mapping σα,β is a bijection on the set V0 as well as V1, we prove that
the set

K = {σα,β : α, β ∈ Fq, α 6= 0}

is a set of automorphism of Υq.
For the last kind of a mapping we recall that the full group of automorphisms of a finite field

of order q = pn for any prime p is known to consist of the so-called Frobenius automorphisms,
given, for any fixed r ∈ {0, 1, . . . , n− 1}, by πr : Fq → Fq, x 7→ xp

r
for each x ∈ Fq.
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We can extend each such automorphism by defining πr : % 7→ %, which induces naturally
(component-wise on the coordinates) a mapping on the vertices of the graph Υq. It is not hard
to check that these Frobenius automorphisms generate automorphisms of the graph Υq.

Let H and K be groups obtained above, that have trivial intersection. For all α, β, γ, δ ∈ Fq,
α, γ 6= 0 we have that

σα,β ◦ ϕγ,δ = ϕγ,δ ◦ σα,β.

In other words, elements of H commute with the elements of K, thus we have the following
lemma.

Lemma 6.1. [J6] Let H and K be the groups defined above. Then H ×K ≤ Aut(Υq), or equ-
ivalently, the full group of automorphisms of Υq contains a subgroup isomorphic to AGL1(q)×
AGL1(q).

If we consider the automorphisms of Υq generated by the Frobenius automorphisms of the
finite field Fq, we can extend the latter lemma.

Lemma 6.2. [J6] Let Fq be a finite field of order q = pn, where p is an odd prime and n an
integer. Then

Aut(Υq) ≥ (H ×K) o F ∼= (AGL1(q)× AGL1(q)) o Zn.

This all finally leads to the following result.

Theorem 6.2. [J6] Let G = Aut(Υq) be the (full) group of automorphisms of Υq. Then G has
exactly four orbits on V (Υq) and these orbits are precisely the sets O1, O2, O3 and O4. Two of
the orbits have length q(q − 1) and the remaining two have length q2(q − 1).



7 Conclusion and future work

Conclusion of our results
In this dissertation we have focused on lifting constructions in the degree-diameter problem

and degree-girth problem.
In Section 3 we have presented new results regarding upper bounds on diameter-two Abelian

lifts of relatively small base graphs, namely dipoles, n-poles and (n, n)-bipoles. Our results have
pointed out that the order of the currently largest Abelian lifts of dipoles (the McKay-Miller-
Širáň graphs) cannot be further improved.

Section 4 contains five known families of ‘near-cages’ of a given degree and girth 6, all of
them constructed as Abelian lifts of dipoles over the Galois field of order q, a power of an odd
prime. For the first of these constructions, denoted by Γα, we have given a new alternative
lifting construction Γκ with the suitable voltage assignments from the Heisenberg group.

We also have produced a family of known ‘near-cages’ of girth 8 as an extension of the Γκ

construction, motivated by the so-called G-graphs (Section 5). At the end of this section we
have explained links between a special case of G-graph construction and the lifting construction
and revealed a related isomorphism of two matrix groups studied in this context.

Finally, in the Section 6 we have showed by detailed investigation of the automorphism
groups that graphs in another well known family of ‘near-cages’ of girth 8, provided in [1], are
neither regular lifts of one-vertex graphs (i.e., Cayley graphs) nor regular lifts of dipoles.

Future work
The development in the study of lifting constructions in the degree-diameter and the degree-

girth problem, as well as examining the groups used for constructing a family of Cayley graphs
of a given degree and diameter 3 in [3], clearly demonstrates that further progress is unlikely
without involving more complicated voltage groups. Thus one of the possible directions for
further research in this area could be to investigate more complicated voltage groups used on
the dipole, which could also lead to constructions of bi-regular graphs with given properties.

Another possible approach of research in the degree-diameter and the degree-girth problem,
stemming from our results in Section 6, is to shift the focus on lifts of base graphs with a larger
number of vertices, similar to the original approach in the construction of the McKay-Miller-
Širáň graphs in [25].
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