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Abstract

In this work, we deal with the problem of surface reconstruction from 3D point cloud data and the seg-
mentation of 3D images. For these tasks, we apply a mathematical model and numerical method based on the
level set algorithm. This method solves the advection equation with a curvature term, which gives the evolution
of an initial condition to the final state. For surface reconstruction, the advective velocity can be defined as
the gradient of the distance function calculated to the point cloud data. The 3D images contain complicated
structures without clear boundaries for which automatic segmentation may not give useful results. We use
manually identified point cloud data to distinguish the subvolumes of the image we want to segment. Combin-
ing the information of the point cloud data with the 3D image intensity we can define the advective velocity
of the level set equation for image segmentation as the weighted sum of distance function and edge detector
function gradients. The edge detector function is applied to the presmoothed 3D image. For the calculation
of the distance function, we compare the fast sweeping method, the vector distance transform algorithm, the
fast marching method, and the Dijkstra-Pythagoras algorithm, and propose how to modify the fast sweeping
method and the vector distance transform algorithm for finding the middle surface between different shapes.
For the numerical discretization, we use a semi-implicit co-volume scheme in the curvature part and an implicit
upwind scheme in the advective part. The method was tested on representative examples and applied to real
data. For surface reconstruction, we used data representing archaeological finds and for tissue segmentation
microscopic 3D images.

Keywords: point cloud data, microscopic 3D images, surface reconstruction, image segmentation, level set
method, distance function calculation

Abstrakt

V rámci tejto práce sa zaoberáme problémom rekonštrukcie plôch z 3D mračna bodov a segmentáciou 3D
obrazov. Pre tieto úlohy používame matematický model a numerickú metódu založenú na level set algoritme.
Táto metóda rieši advekčnú rovnicu s krivostnou čast’ou, pomocou ktorej dostávame vývoj počiatočnej pod-
mienky do konečného stavu. Pre rekonštrukciu plôch je advekčná rýchlost’ definovaná ako gradient funkcie
vzdialenosti k mračnu bodov. V biologických aplikáciach môžu 3D obrazy obsahovat’ komplikované štruktúry
bez jasných hraníc, pre ktoré automatická segmentácia nemusí vždy priniest’ užitočné výsledky. Na odlíšenie
takýchto štruktúr v obraze, ktorý chceme segmentovat’, používame manuálne identifikované mračno bodov.
Kombináciou informácií o mračne bodov s intenzitou 3D obrazu môžeme definovat’ advekčnú rýchlost’ v level
set rovnici ako vážený súčet gradientov funkcií vzdialenosti a hranového detektora pričom hranový detektor sa
aplikuje na vyhladený 3D obraz. Pre výpočet funkcie vzdialenosti porovnávame fast sweeping metódu, algo-
ritmus vector distance transform, fast marching metódu a algoritmus Dijkstra-Pythagorasov a navrhujeme, ako
zmenit’ fast sweeping metódu a algoritmus vector distance transform na nájdenie strednej plochy medzi rôz-
nymi útvarmi. Pre numerickú diskretizáciu používame semi-implicitnú schému duálnych konečných objemov
v krivostnej časti a implicitnú upwind schému v advekčnej časti. Metóda bola testovaná na reprezentatívnych
príkladoch a následne použitá na reálne dáta. Pre rekonštrukciu plôch sme použili údaje predstavujúce arche-
ologické nálezy a pre segmentácie tkanív mikroskopické 3D obrazy.

Kl’účové slová: mračno bodov, mikroskopické 3D obrázky, rekonštrukcia plochy, segmentácia obrazu, level
set metóda, výpočet funkcie vzdialenosti
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1. Introduction
In the focus of our thesis, there are tasks of image segmentation and surface reconstruction from point

cloud data. In the image segmentation, we mainly deal with the analysis of biological samples, represented
by 3D microscopic images, where we want to segment different continuous tissues consisting of separate cells
or fractions of a specific organ. In such 3D images, we need a suitable way to obtain a digital model of the
studied cell populations to be able to analyze their shape, volume, or evolution. For the point cloud surface
reconstruction, we used to deal with data obtained by laser scanning, representing, e.g., archaeological finds.
Here, the goal is to create a computerized 3D representation of the original object from which the point cloud
was created, as accurately as possible. In both cases, the final result is a digital 3D model represented by a
triangulated surface as a result of suitable surface evolution. This fact gave us the idea that there are parallels
in these two tasks and yield a new mathematical model for image segmentation supported by the point cloud
presented in this thesis.

Image segmentation is widely used to divide images into fractions of units with related values in order to
allow an easier representation, edge detection, or shape analysis. Such image segments contain data, which
are related and have similar features. An image simplified in this manner is easier to analyze and the data it
represents is more clear to understand. There are many segmentation methods used by the computer vision
community [1, 2, 3, 4], however, their usability is limited by a level of noise and desired shape variability.
One of the useful methods for image segmentation is the subjective surface method by [5], which was used in
developmental cell biology image processing [6, 7, 8]. However, the application of this method to data with
strong noise or the segmentation of complicated cellular structures is not possible without an additional model
adjustment. For the biological data we work with, the conventional methods which utilize just the 3D image
information, are not sufficient enough to obtain satisfactory results.

The process of point cloud surface reconstruction can be very complex and time-consuming as well. The
prime cause of this difficulty is that the point cloud data has no information about ordering or connectivity.
Other reasons, which can make the process difficult, are the unknown topology of the scanned object and the
presence of noise in the point cloud data.

Various methods already exist to process the point cloud data sets. The most used approaches by commer-
cial software are nonuniform B-spline surfaces, triangulated surfaces, and the substitution of point cloud by
shapes defined by mathematical equations representing geometric objects as cuboid, cylinder, cone, or sphere.
Several algorithms and software packages are available for different tasks, see e.g. [9, 10], nevertheless, it is
difficult to select the optimal one for all requirements. A different approach for the processing of point cloud
data is given by the application of the level set method [11]. In [12, 13] an efficient algorithm was proposed
utilizing the level set method to solve the problem of surface reconstruction from point cloud data based on
[5, 11]. The basic form of the algorithm consists of the solution of a partial differential equation (PDE) rep-
resenting the level set motion. The solution of the PDE is calculated on a rectangular computational domain,
which we choose according to the point cloud. The point cloud data set must be a subset of the computational
domain. The solution by the level set method results in the evolution of the level set function as the deformation
of an initial guess. The reconstructed surface is then created as an isosurface of the level set function at the
numerical steady state.

The level set method has a wide range of applications in image processing, computer graphics, material
science, and physics [14, 15]. It gives us a solid base to develop new segmentation methods for biological
samples, which do not have clear boundaries and for which other automatic segmentation algorithms do not
give any useful results.

The chapters of this thesis are organized in the following way. In Chapter 2 we describe in detail how
the level set method is adapted to the task of surface reconstruction from point cloud data by using a specific
partial differential equation. This equation is the base of our new mathematical model which we created for
3D image segmentation supported by the point cloud data. We show how we managed to combine the 3D
image intensity information and point cloud specifying roughly the border of an object in the image into one
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algorithm. After the description of the mathematical model, Chapter 3 provides a step by step description of
the numerical discretization of the partial differential equation, which is the basis for the implementation of our
algorithm.

As seen throughout the thesis the calculation of the distance function is a very important part of the pre-
sented algorithms. This is the reason why Chapter 4 is fully dedicated to this topic. Here we analyze the
following methods: the fast sweeping method (FSM) [16], the vector distance transform (VDT) algorithm [17],
the fast marching method (FMM) [18] and the Dijkstra-Pythagoras (DP) method [19]. While working with the
VDT and FSM algorithm we discovered a way to utilize them for the search of a middle surface (skeleton)
between two and more input data sets. We describe how we achieved this goal. The search for a skeleton
between data sets was tested in several experiments and results are presented in this section, too.

Finally, in Chapter 5 we test our numerical method on real-life data sets. First, in Section 5.1 we analyze
in more depth the point cloud surface reconstruction capabilities of our algorithm and study how the resulting
reconstruction depends on the parameters of our model. We do this by applying our model to a point cloud
data representing an archaeological find created by 3D laser scanning. For the obtained data, we use the mean
and maximum directed Hausdorff distances to provide quantifiable means to compare results. Next in Section
5.2 we arrive at our initial goal of 3D image segmentation of complex biological structures. In this section we
demonstrate the segmentation capabilities on biological microscopic 3D images.

To obtain the presented results our algorithm and supporting programs were implemented with the help
of the programming languages C and C++, in the development environment of Microsoft Visual Studio 2017.
To accelerate the run time of our algorithm we implemented parallelization in several parts of our code using
the OpenMP library [20]. We provide an example of the parallel computation improvements on the numerical
experiment in Section 5.2. All visualization was created with the open source application Paraview.

We thank Dr. Jana Haličková-Brehovská, from the Monuments Board of the Slovak Republic, for providing
us with the archaeological point cloud data and the members of the ImageInLife EC project team, Antonia We-
berling from the University of Cambridge and Mageshi Kamaraj from CNRS - BioEmergences Gif-sur-Yvette,
for providing us with the biological microscopic data.

2. Mathematical model
Our mathematical model is based on the level set method which solves the following advection equation

with the curvature term,

ut + v ·∇u−δ |∇u|∇ ·
(

∇u
|∇u|

)
= 0,

(x, t) ∈Ω× [0,T ] ,
(2.1)

where u(x, t) is an unknown function, v denotes the advective velocity, the parameter δ ∈ [0,1] determines
influence of the curvature to the result, Ω is the computational domain, and [0,T ] is a time interval. This
equation is coupled with homogeneous Neumann boundary conditions and an initial condition.

This level set equation was also used in works [12, 13] where the advective velocity was defined as the
gradient of the distance function

v =−∇d, (2.2)

where d is the distance to the point cloud. In these papers, the task was the reconstruction of a surface repre-
sented by the point cloud. The basic idea for this type of surface reconstruction was taken from [11, 21], but
instead of following just one particular isosurface throughout the evolution of the level set function, the 3D
surface is determined from a shock in the final function profile as it is standard in the subjective surface method
[5]. In the following paragraphs, we want to demonstrate how our surface reconstruction by the model (2.1)
and the level set method works. Let us consider a point cloud data created with parametric equations
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x = sx + r ·
(
0.207+2.003 · sin2 (ϕ)−1.123 · sin4 (ϕ)

)
· cos(ϕ) · sin(θ) ,

y = sy + r · cos(ϕ) · sin(θ) ,

z = sz + r · sin(ϕ) ,

ϕ ∈ 〈0,2π) ,θ ∈ 〈0,π) .

(2.3)

by using the coefficitents r = 1.0, s = (0,0,0) and the step π

10 for ϕ and θ . We call this shape the Sponge and
will use it as an example on which we will explain how the mathematical model (2.1) works.

We calculate the distance function to the point cloud data and visualize them together in the first picture of
Figure 2.1. In [13] Section 2.2. it is shown how we utilize the distance function to generate an initial condition
for the function u in equation (2.1). With a tagging algorithm, we find an isosurface of the distance function
which contains the point cloud data Ω0. We can see an example of such a surface in the second picture of
Figure 2.1. By this surface the computational domain Ω is divided into two parts. For the initial condition in
the external part, we set the value of u to 0.0 and in the internal part to 1.0. Although any surface bounded by Ω

which contains Ω0 could be used for this purpose, by using the isosurface of the distance function we can find a
shape already close to the final solution of (2.1), thus speeding up the whole process of surface reconstruction.
What we need to take in consideration is that we can not choose an isosurface too close to the point cloud data,
because depending on the density of the data set and the density of a discretized computational domain the
isosurface could consist of separated shapes around the points of the point cloud data. By this, we would get
an incorrect initial condition, for example, the one which is visualized in the third picture of Figure 2.1.

After we managed to obtain a suitable initial condition, by the application of equation (2.1) it can be
deformed to obtain the final reconstruction. The advective velocity (2.2) drives the initial condition to the shape
of the point cloud data. The fourth picture of Figure 2.1 shows us how the vector field in (2.2) looks like. Here
we can see how all the vectors are pointing towards the points in our data set, thus explaining why the gradient
of the distance function pulls the initial condition to the final solution.

In theory the final solution of the function u should have the value of 0.0 in the exterior domain of the
object represented by the point cloud data and 1.0 in the interior domain. This allows us to extract the desired
reconstructed surface form u by visualizing its isosurface with the value 0.5, meaning the border between the
two domains. If only the distance function gradient has an influence on the solution we get the reconstructed
surface visualized in the fifth picture of Figure 2.1. Here we can see that the solution is too rough and angular.
For this reason we include the curvature term in equation (2.1).

The mean curvature flow’s level set formulation was introduced in [22]. The curvature is used to smooth
out the solution. In the sixth picture of Figure 2.1 we can see the solution obtained by using the curvature
coefficient δ = 0.025. Compared to the solution with zero curvature influence the final result is much closer
to the desired shape. The curvature term must be applied carefully because if its influence is too strong the
shape can shrink too much and lose its desired form. We can see this effect in Figure 2.2 where we visualize
results compared to the Sponge point cloud data for different δ values. We can see that for this example the
reconstruction is already losing too much of its volume from δ = 0.1. We will examine the influence of the
curvature term more deeply taking into account the point cloud and computational grid density in Section 5.1.

The surface reconstruction arises also in the segmentation of 3D images and it represents a boundary of an
object in the 3D image. For an illustration let us consider the Sponge shape as a 3D image where the intensity
value of voxels (3D pixels) inside the Sponge is 255 and outside 0. We can see this 3D image in Figure 2.3 in
the first picture. For classical image segmentation we can utilize the edge detector function g0 = g

(∣∣∇Gσ ∗ I0
∣∣),

similarly as it is used in [5, 6, 23, 24, 25, 7]. Here, I0 denotes the 3D image intensity, Gσ represents a smoothing
kernel applied to the image for presmoothing the gradients of the intensity, and g is a function defined as

g(s) =
1

1+Ks2 , (2.4)

where K ≥ 0 is an empirically chosen parameter, see [26]. By using this function we can define the advective
velocity in (2.1) as

v =−∇g0, (2.5)

and apply the mathematical model (2.1) to the segmentation of the Sponge 3D Image. For a simple demon-
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Figure 2.1: Visualization of results calculated to the Sponge data set (from left up to right bottom): the distance
function together with the point cloud data; an initial condition for the function u in equation (2.1) calculated as
an isosurface of the distance function; an incorrect initial condition for the function u obtained by an isosurface
of the distance function too close to the point cloud data; the distance function gradient together with the point
cloud data; surface reconstruction obtained by the model (2.1) and the advective velocity (2.2) with no curvature
influence, i.e. δ = 0.0; surface reconstruction with curvature influence δ = 0.025. The data in the first column is
visualized in the cutting plane y = 0.0. For the distance gradient vector field, just a quarter of the image is shown
for more detail. The data in the rest of the pictures is visualized as an isosurface from the view parallel to the plane
y = 0.0.

stration we apply the initial condition, as a sphere around the area we want to segment. Setting the curvature
parameter to δ = 0.025 and K = 10.0 we obtain the result visualized in the second image of Figure 2.3.

From the examples above we see how point cloud data and 3D image intensity can be processed by the
mathematical model (2.1). What we are aiming for is to combine both information in the advective velocity.
Our motivation for this is a segmentation task that needed to be executed on a 3D microscopic image. This im-
age contains the microscopic scans of a mouse embryo at early peri-implantation stages provided by the group
of Magdalena Zernicka-Goetz, University of Cambridge, Department of Physiology, Development and Neuro-
sciences, working on understanding the development of cell lineages and patterning in the early mammalian
embryos, see [27, 28]. We obtained the data in the course of an ImageInLife EC funded project.

At the time of implantation, the embryo is composed of three distinct tissues, the epiblast, which will give
rise to the organism, is enveloped by two extraembryonic lineages, the visceral endoderm (VE) and the extra-
embryonic ectoderm (ExE). Both provide essential signaling cues mediating proper embryonic development
eventually giving rise to yolk sac and placenta respectively [29, 30]. Our colleagues on the biology side are
trying to understand the dynamics of the two tissues. The embryo was scanned in 58 sections along the z axis
in 1µm steps. In Figure 2.4, we can see section 20 (top row) and 40 (bottom row). In Figure 2.5 we visualize
all sections together as a 3D image.

Since any of the tissues could not be segmented automatically by using just the 3D image intensity infor-
mation, the biologists identify the tissue borders in 2D slices by marking through single points. We can see the
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Figure 2.2: Comparison of curvature influence to the final reconstruction of the Sponge point cloud data. The
solutions are visualized with the initial point cloud data. The δ parameter for curvature influence is equal to 0.0,
0.05, 0.1, 0.15 (from left to right).

Figure 2.3: In the first picture, we can see a 3D image of the Sponge shape visualized by volume rendering where
the lowest values have an opacity of 0.0 and the highest values 1.0. In the second picture, we see the result of the
segmentation by the equation (2.1) with advective velocity (2.5) visualized as an isosurface 0.5 of the function u.

examples of manually identified points in Figure 2.4 for VE part. These points representing the tissue borders
are the basis for 3D point cloud data entering the model equation (2.1). Gathering the points from all sections
and combining them into one data set we obtain point cloud data for both ExE and VE part. We can see the vi-
sualization of the point cloud data in Figure 2.5 compared to the cell structure. The idea of using point cloud for
segmentation instead of image information was first explored in [31]. In the current work, we aim to combine
this idea with the 3D image intensity information.

For this we define the advective velocity v in (2.1) as the combination of the distance function and the edge
detector function gradients, i.e.

v = θ (−∇d)+ρ

(
−∇g0

|∇g0|
ε

)
. (2.6)

In the model, the first term −∇d drives the level sets of the solution u(x, t) of (2.1) to the points of the cloud
and the second term

(
−∇g0/

∣∣∇g0
∣∣
ε

)
drives them to the image edges in the neighborhood of the point cloud.

The results of segmentation by using model (2.6) for the mouse embryo tissues can be seen in Section 5.2.
Let us note, that the term

∣∣∇g0
∣∣
ε

is calculated according to the Evans-Spruck ε-regularization [32] as
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√
ε2 + |∇g0|2 where ε > 0. The parameters θ ,ρ ∈ [0,1] determine the influence of the two considered gradients

on the surface reconstruction process. The edge detector gradient is normalized in order to get a comparable
speed of advection coming from both the distance function and the edge detector function terms.

With the added information of the distance function to the segmentation process, we can again use it to
obtain an ideal initial condition as described in the previous paragraphs.

The mathematical model (2.1) with the definition of advective velocity (2.6) appears in our publication
[33]. In this article we also published the numerical discretization of the model presented in Chapter 3 and the
numerical results appearing in Section 5.2.

Figure 2.4: Section 20 (left) and 40 (right) of the embryo with the marked points for visceral endoderm (VE).

Figure 2.5: 3D image of embryo structure, visualized with volume rendering together with point cloud data for
ExE part (orange points) and VE part (green points).



3. Numerical discretization
First of all, we apply a backward difference in time with a uniform time step τ and the semi-implicit time

discretization in nonlinear curvature term of (2.1) to get

un−un−1

τ
+ v ·∇un−δ

∣∣∇un−1∣∣∇ ·( ∇un

|∇un−1|

)
= 0. (3.1)

The spatial discretization is performed on a uniform voxel grid where the voxels can be described as cubes with
edge size h. The voxels are denoted by the indexes p = (i, j,k) and at each voxel center the value of the image
intensity is given by I0

i, j,k, the value of computed distance function is denoted by di, j,k, and the computed value
of unknown function un at time step n in voxel p= (i, j,k) is denoted by both un

p and un
i, j,k. For the calculation of

the norm of gradient
∣∣∇un−1

∣∣, on the voxel faces and in the voxel, and the calculation of
∣∣∇Gσ ∗ I0

∣∣ to determine
the values of g0 at voxels, we use the 3D tetrahedral finite element grid Th illustrated in Figure 3.1 [6].

Figure 3.1: The voxel grid cell with a tetrahedral finite element.

The tetrahedral finite elements in Th are created by the following approach. Every voxel is divided into six
pyramid shaped elements with the base surface given by the voxel’s faces and the common vertex by the voxel
center. Each of these pyramids is joined with the neighboring pyramids, with which they have a common base
surface. These newly formed octahedrons are then split into four tetrahedrons.

For tetrahedral grid Th, we construct a co-volume mesh, which consists of cells p = (i, j,k) corresponding
again to the voxels at our grid, see also [6]. We denote the set of all neighboring cells q of p by Cp. The centers
of these cells q∈Cp are all connected to center of p by a common edge σpq of four tetrahedrons with the length
hpq = h. Each cell p is bounded by a plane for every q ∈Cp, which is perpendicular to σpq and denoted by epq.
The set of tetrahedrons T , which have σpq as an edge, is denoted by εpq. For every T ∈ εpq, cT

pq is the area of
the intersection of epq and T . Let Np be the set of tetrahedrons that have p as a vertex. Let uh be a piecewise
linear function on Th. We use the notation up = uh (xp) where xp denotes the coordinates of the center of cell
p.

The spatial discretization of (3.1) is derived by using the following form of the equation:

un−un−1

τ
+ v ·∇un = δ

∣∣∇un−1∣∣∇ ·( ∇un

|∇un−1|

)
. (3.2)

We begin by integration of (3.2) over every p:∫
p

un−un−1

τ
dx+

∫
p

v ·∇undx =
∫

p
δ
∣∣∇un−1∣∣∇ ·( ∇un

|∇un−1|

)
dx. (3.3)

9



10 CHAPTER 3. NUMERICAL DISCRETIZATION

For the first part of left hand side in (3.3), we get the approximation in the form∫
p

un−un−1

τ
dx = m(p)

un
p−un−1

p

τ
, (3.4)

where m(p) is a measure in R3 of the cell p. The second part of the left hand side can be written in an equivalent
form by

v ·∇u = ∇ · (uv)−u∇ · v,∫
p

v ·∇undx =
∫

p
∇ · (unv)dx−

∫
p

un
∇ · vdx.

Considering un constant on p in the second term on the right hand side and by using the divergence theorem,
we get ∫

p
∇ · (unv)dx−

∫
p

un
∇ · vdx =

∫
∂ p

unv · n̄dσ −un
p

∫
∂ p

v · n̄dσ =

∑
q∈Cp

un
pq

∫
epq

v · n̄dσ − ∑
q∈Cp

un
p

∫
epq

v · n̄dσ

(3.5)

where un
pq is an approximate value of the level-set function on the face epq and n̄ is the outer normal to p. We

approximate
∫

epq
v · n̄dσ in (3.5) by vpq = h2v(xpq) · n̄, where xpq is a center of epq, and get∫

p
v ·∇undx = ∑

q∈Cp

vpq
(
un

pq−un
p
)
. (3.6)

In order to use the upwind approach, the set Cp is divided into Cp =Cin
p ∪Cout

p , where Cin
p =

{
q ∈Cp, vpq < 0

}
,

which consists of the inflow boundaries, and Cout
p =

{
q ∈Cp, vpq > 0

}
consisting of the outflow boundaries.

By the upwind approach, we set the values un
pq to un

q if q ∈Cin
p and to un

p if q ∈Cout
p . After these definitions, we

can rewrite (3.6) into ∫
p

v ·∇undx = ∑
q∈Cp

min(vpq,0)
(
un

q−un
p
)
. (3.7)

For discretization of the right hand side of (3.3), we consider the term in front of divergence constant on p and
then we use the divergence theorem to get∫

p
δ
∣∣∇un−1∣∣∇ ·( ∇un

|∇un−1|

)
dx = δ

∣∣∇un−1
p

∣∣ ∑
q∈Cp

∫
epq

1
|∇un−1|

∂un

∂ n̄
dσ . (3.8)

The integral
∫

epq
1

|∇un−1|
∂un

∂ n̄ dσ and
∣∣∇un−1

p

∣∣ in (3.8) is approximated numerically using piecewise linear recon-

struction of un−1 on the tetrahedral grid Th, thus we get∫
p

δ
∣∣∇un−1∣∣∇ ·( ∇un

|∇un−1|

)
dx = δ

∣∣∇un−1
p

∣∣ ∑
q∈Cp

(
∑

T∈εpq

cT
pq

1∣∣∇un−1
T

∣∣
)

un
q−un

p

h

where ∣∣∇un−1
p

∣∣= Mn−1
p = ∑

T∈Np

m(T ∩ p)
m(p)

∣∣∇un−1
T

∣∣ (3.9)

and
∣∣∇un−1

T

∣∣ denotes the gradient of un−1
h on T . Then the discretized form of the equation (3.2) is given by

m(p)
un

p−un−1
p

τ
+ ∑

q∈Cp

min(vpq,0)
(
un

q−un
p
)
=

δ Mn−1
p ∑

q∈Cp

(
∑

T∈εpq

cT
pq

1∣∣∇un−1
T

∣∣
)

un
q−un

p

h
.

(3.10)
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After rearranging (3.10) and applying the Evans-Spruck ε-regularization
∣∣∇un−1

T

∣∣
ε
=
√

ε2 +
∣∣∇un−1

T

∣∣, the equa-
tion has the following form

un
p +

τ

m(p)

(
∑

q∈Cp

min(vpq,0)
(
un

q−un
p
)

−δ Mn−1
p ∑

q∈Cp

(
∑

T∈εpq

cT
pq

1∣∣∇un−1
T

∣∣
ε

)
un

q−un
p

h

)
= un−1

p .

(3.11)

If we define the coefficients

an−1
pq =

τ

m(p)

(
min(vpq,0)−δ Mn−1

p
1
h ∑

T∈εpq

cT
pq

1∣∣∇un−1
T

∣∣
ε

)
, (3.12)

we get from (3.11) a system of linear equations with strictly diagonally dominant M-matrix in the form

un
p + ∑

q∈Np

an−1
pq
(
un

q−un
p
)
= un−1

p , (3.13)

which by addition of the homogeneous Neumann boundary conditions and initial values u0
p is solved in every

time step n. Since an−1
pq are non-positive coefficients a unique solution exists (un

1, ...,u
n
M) of (3.13) where M is a

number of unknowns, for any τ > 0, ε > 0, and for every n = 1, ...,N.
For the numerical solution of (3.13), we need the values of matrix coefficients apq. We apply a "finite-

difference notation", the cell p is denoted by the index triplet (i, j,k). The value un
p is associated with un

i, j,k. At

each cell p, the set Np consists of 24 tetrahedrons on which we compute |∇un
T |ε denoted by Gun,l

i, j,k, l = 1, ...,24.

To derive the computation of Gun,l
i, j,k, we introduce a similar notation as used in [25].

First, we define the index sets P1, P2 and P3 as

P1 = {(r,s, t) ;r,s, t ∈ {−1,0,1} ; |r|+ |s|+ |t|= 1}
P2 = {(r,s, t) ;r,s, t ∈ {−1,1}}
P3 = {(r,s, t) ;r,s, t ∈ {−1,0,1} ; |r|+ |s|+ |t|= 2}

Considering any (r,s, t) ∈ P1 let xr,s,t
i, j,k be the points where the edges σpq intersect the planes epq, for every

q ∈ Cp. Every vertex of a cubic element is represented by zr,s,t
i, j,k, for (r,s, t) ∈ P2. The midpoints between

each neighboring vertices of cubic elements are denoted by yr,s,t
i, j,k, for (r,s, t) ∈ P3. The explained notation is

presented in Figure 3.2.

x0,0,1
i, j,k•

x−1,0,0
i, j,k •

x0,1,0
i, j,k•

z−1,1,1
i, j,k

z1,1,−1
i, j,k

z−1,1,−1
i, j,k

z1,−1,1
i, jk

•

•
•

•

•

•
•

y−1,0,−1
i, j,k

•

•

y−1,0,1
i, j,k

•

y−1,1,0
i, j,k •

y0,1,−1
i, j,k•

•

y0,1,1
i, j,k•

•
•

x1,0,0
i, j,k•

x0,0,−1
i, j,k•

x0,−1,0
i, j,k

•

z1,−1,−1
i, j,k

z−1,1,−1
i, j,k

z1,1,1
i, j,k

z1,−1,1
i, jk

•
•

•

•

•

•
•

•

y0,−1,−1
i, j,k•

•

•

y1,0,−1
i, j,k
•

•
y1,−1,0

i, j,k•

y1,0,1
i, j,k
•

y0,−1,1
i, j,k •

Figure 3.2: Notation for the additional points of a grid cell used for calculation of Gun,l
i, j,k, l = 1, ...,24
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The values un−1 approximated at xr,s,t
i, j,k, zr,s,t

i, j,k and yr,s,t
i, j,k are denoted by ur,s,t

i, j,k, leaving out the time index. In
xr,s,t

i, j,k, (r,s, t) ∈ P1, the values are calculated as the average value for two neighboring cells,

ur,s,t
i, j,k =

1
2

(
un−1

i, j,k +un−1
i+r, j+s,k+t

)
, for (r,s, t) ∈ P1.

In zr,s,t
i, j,k, (r,s, t) ∈ P2, as the average value of the 8 voxels which have zr,s,t

i, j,k as a common vertex,

ur,s,t
i, j,k =

1
8
(un−1

i, j,k +un−1
i+r, j,k +un−1

i, j+s,k +un−1
i, j,k+t +un−1

i+r, j+s,k+

un−1
i+r, j,k+t +un−1

i, j+s,k+t +un−1
i+r, j+s,k+t), for (r,s, t) ∈ P2.

In yr,s,t
i, j,k, (r,s, t) ∈ P3, as the averages of values ur,s,t

i, j,k in points zr,s,t
i, j,k,

ur,s,t
i, j,k =

1
2

(
ur+ξ (r),s+ξ (s),t+ξ (t)

i, j,k +ur−ξ (r),s−ξ (s),t−ξ (t)
i, j,k

)
, for (r,s, t) ∈ P3,

where

ξ (x) =

{
0 if x ∈ {−1,1}
1 if x = 0

.

Norm of gradient
∣∣∇un−1

T

∣∣
ε

is computed by using values in two neighboring voxel centers, in vertices of voxels
corresponding to tetrahedral edge, zr,s,t

i, j,k, and center of that edge, yr,s,t
i, j,k, and center of the face, xr,s,t

i, j,k. Approx-
imation of partial derivatives included in gradient computation for one tetrahedra is illustrated in Figure 3.3.
By red color and dashed pattern we indicate the line which is used for approximating ∂uh

∂x , by green dotted
line approximation of ∂uh

∂y , and blue dash-dotted line approximation of ∂uh
∂ z . For other tetrahedrons it is done

similarly. Thereby, we get the values Gun−1,l
i, j,k l = 1, ...,24.

Figure 3.3: Tetrahedral finite element with marked edges for approximation of partial derivatives.

Besides
∣∣∇un−1

T

∣∣
ε
, given using the above explanation and Mn−1

p given by (3.9), we need to determine also
the values vpq in (3.12). Taking into account the definition (2.6), we get

vpq = h2
(

θ (−∇d)+ρ

(
−∇g0

|∇g0|
ε

))∣∣∣
xpq
· n̄. (3.14)

On the six voxel faces we can write

vt
i, j,k =−θh

(
di, j,k+1−di, j,k

)
−ρh

((
g0

i, j,k+1−g0
i, j,k
)
/
∣∣∇g0

i, j,k

∣∣
ε

)
vb

i, j,k = θh
(
di, j,k−di, j,k−1

)
+ρh

((
g0

i, j,k−g0
i, j,k−1

)
/
∣∣∇g0

i, j,k

∣∣
ε

)
vn

i, j,k =−θh
(
di+1, j,k−di, j,k

)
−ρh

((
g0

i+1, j,k−g0
i, j,k
)
/
∣∣∇g0

i, j,k

∣∣
ε

)
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vs
i, j,k = θh

(
di, j,k−di−1, j,k

)
+ρh

((
g0

i, j,k−g0
i−1, j,k

)
/
∣∣∇g0

i, j,k

∣∣
ε

)
ve

i, j,k =−θh
(
di, j+1,k−di, j,k

)
−ρh

((
g0

i, j+1,k−g0
i, j,k
)
/
∣∣∇g0

i, j,k

∣∣
ε

)
vw

i, j,k = θh
(
di, j,k−di, j−1,k

)
+ρh

((
g0

i, j,k−g0
i, j−1,k

)
/
∣∣∇g0

i, j,k

∣∣
ε

)
.

To obtain these values, we need to evaluate the discrete values of g0
i, j,k = g

(∣∣∣∇Gσ ∗ I0
i, j,k

∣∣∣) for every voxel. To

achieve this, we solve the convolution Iσ = Gσ ∗ I0 through solving the linear heat equation by the implicit
scheme with a time step related to σ , where also the homogeneous Neumann boundary conditions are applied.
Now, we can calculate

∣∣∣∇Iσ

i, j,k

∣∣∣ analogously to (3.9) and finally we get

g0
i, j,k = g

(
1
24

24

∑
l=1

GIσ ,l
i, j,k

)
. (3.15)

With the discrete values of g0
p, we compute norm of regularized gradient

∣∣∇g0
p

∣∣
ε
=
√

ε2 +
∣∣∇g0

p

∣∣2 where
∣∣∇g0

p

∣∣
is given according to the "magic formula" as described in [34]:∣∣∇g0

p

∣∣2 = 1
m(p) ∑

epq∈Cp

m(epq)
1

dpq

(
g0

pq−g0
p
)2

(3.16)

where dpq is the distance between the center of cell p and the center of epq. With m(p) = h3, m(epq) = h2,

dpq =
h
2 and using g0

pq =
g0

q+g0
p

2 , we get:

∣∣∇g0
p

∣∣=
√√√√1

2 ∑
q∈Cp

(
g0

q−g0
p

h

)2

. (3.17)

So we get

∣∣∇g0
i, j,k

∣∣=
√√√√1

2 ∑
(r,s,t)∈P1

(
g0

i+r, j+s,k+t −g0
i, j,k

h

)2

(3.18)

By using the above considerations, we define

bi, j,k =
τ

h3

(
min

(
vb

i, j,k,0
)
−δ Mn−1

i, j,k
h
4

4

∑
l=1

(
ε

2 +
(

Gun−1,l
i, j,k

)2
)− 1

2
)

ti, j,k =
τ

h3

(
min

(
vt

i, j,k,0
)
−δ Mn−1

i, j,k
h
4

8

∑
l=5

(
ε

2 +
(

Gun−1,l
i, j,k

)2
)− 1

2
)

ni, j,k =
τ

h3

(
min

(
vn

i, j,k,0
)
−δ Mn−1

i, j,k
h
4

12

∑
l=9

(
ε

2 +
(

Gun−1,l
i, j,k

)2
)− 1

2
)

si, j,k =
τ

h3

(
min

(
vs

i, j,k,0
)
−δ Mn−1

i, j,k
h
4

16

∑
l=13

(
ε

2 +
(

Gun−1,l
i, j,k

)2
)− 1

2
)

ei, j,k =
τ

h3

(
min

(
ve

i, j,k,0
)
−δ Mn−1

i, j,k
h
4

20

∑
l=17

(
ε

2 +
(

Gun−1,l
i, j,k

)2
)− 1

2
)

wi, j,k =
τ

h3

(
min

(
vw

i, j,k,0
)
−δ Mn−1

i, j,k
h
4

24

∑
l=21

(
ε

2 +
(

Gun−1,l
i, j,k

)2
)− 1

2
)



where Mn−1
i, j,k is given by

Mn−1
i, j,k =

√√√√
ε2 +

(
1
24

24

∑
l=1

Gun−1,l
i, j,k

)2

and the diagonal coefficient is defined as

ci, j,k = 1−bi, j,k− ti, j,k−ni, j,k− si, j,k− ei, j,k−wi, j,k.

With these notations, we rewrite (3.13) into the form of a system of linear equations

ci, j,kun
i, j,k +bi, j,kun

i, j,k−1 + ti, j,kun
i, j,k+1 +ni, j,kun

i+1, j,k

+si, j,kun
i−1, j,k + ei, j,kun

i, j+1,k +wi, j,kun
i, j−1,k = un−1

i, j,k,
(3.19)

for all (i, j,k). This system is solved at every time step by the SOR (Successive Over Relaxation) iterative
method. We stop the calculation when the residuum between two consecutive time steps is lower than a chosen
tolerance.

For the calculation, we need discrete initial values for the level set function u(x,0) in the zero time step.
This initial condition is determined by a simple tagging algorithm using distance function to the point cloud.
With further modification of this tagging algorithm, we are able to construct a band around the area between
the initial surface and point cloud data for computation acceleration [13]. For finding the surface, which we
want to reconstruct, it is sufficient to update the solution values on grid cells contained only in such band.

4. Calculation of the distance function
The calculation of the distance function is a very important part of the numerical solution of (2.1). In

our previous works [35, 13, 33] for the calculation of the distance function we mainly used the so-called fast
sweeping method described in [16]. In this chapter, we will analyze other options for this task by comparing
their accuracy and efficiency. This analysis is limited to the data sets we work with and the methods which
we found helpful in our research, namely the fast sweeping method (FSM) [16], the vector distance transform
(VDT) algorithm [17], the fast marching method (FMM) [18] and the Dijkstra-Pythagoras (DP) method [19].
More detailed surveys can be found in works such as [36, 37]. Besides the analysis, we propose how to use two
of the discussed methods for the search of the middle surface, the so-called skeleton, between two or more data
sets.

4.1 Comparing methods

To compare the mentioned algorithms, we construct the following experiment. Let us have a rectangular
computational domain which has its grid point of minimum coordinates at (−0.4,−0.4,−0.4) and of maximum
coordinates at (1.4,1.4,1.4). In this domain we insert a cube which has its vertex with minimum coordinates at
(0.0,0.0,0.0) and maximum coordinates at (1.0,1.0,1.0). We choose these parameters thus we can discretize
the computational domain in a way that some of the grid points will lie on the surface of the cube. In this way,
we can initialize the value of the distance function at these points with the exact value 0. With this setup, we
computed the distance function for the Cube with the four algorithms on the computational domain discretized
to a grid by voxels with different edge sizes, namely 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125. You can
see that the next size is always half of the previous. We demonstrate how the distance function looks like on
these grids in Figure 4.1 calculated by the FSM algorithm.

To compare the precision of the algorithms, we calculated the mean squared difference from the exact
solution for all grids. We are listing these results in Table 4.1. In the first column, we list the number of grid
points in x, y, z directions of our computational grid. In the second column, we see the length of the voxel edges.
In the following columns, we see the mean squared difference for FSM, VDT, FMM, and DP methods. We
can see that values for the VDT and DP methods are basically 0. This is because they yield Euclidean distance

14
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results. The results of FSM and FMM are less precise. We also measured the CPU time (in seconds) which
was needed to calculate the distance function with the different methods. We are listing this in Table 4.2. Here
again, we list the parameters of our grid first. In the third column, we list the CPU time for the initialization
phase of the algorithms. The initialization is the same for all four methods. Because of the simplicity of the
experiment, this takes just a few seconds even for the biggest grid. The following columns show the measured
times for the four algorithms. Comparing all the data we can see that with respect to computation duration the
FSM algorithm outperforms all other methods.

Figure 4.1: Distance function visualization for the Cube experiment, we visualize the section in a constant z plane
for voxel edge sizes 0.2, 0.1, 0.05, 0.025. Values go from the highest dark red to the lowest dark blue. Results
were calculated by FSM.

Number of
grid points

Voxel
edge size

FSM VDT FMM DP

103 0.2 2.5692e-03 1.4791e-34 2.5692e-03 4.6622e-33
193 0.1 9.7901e-04 1.8869e-34 9.7902e-04 6.4759e-33
373 0.05 3.7697e-04 1.0579e-34 3.7697e-04 1.2404e-32
733 0.025 1.4352e-04 5.0275e-35 1.4352e-04 1.0659e-32
1453 0.0125 5.3092e-05 2.5195e-35 5.3092e-05 9.9842e-33
2893 0.00625 1.8949e-05 1.3057e-35 1.8949e-05 3.5044e-32
5773 0.003125 6.5244e-06 6.5770e-36 6.5244e-06 1.4129e-31

Table 4.1: Mean squared difference comparison for distance function calculation methods tested on the Cube
experiment.

Number of
grid points

Voxel
edge size

Initialization FSM VDT FMM DP

103 0.2 0 0.001 0.002 0.001 0.001
193 0.1 0 0.002 0.017 0.002 0.004
373 0.05 0.001 0.008 0.029 0.022 0.032
733 0.025 0.014 0.059 0.186 0.187 0.274
1453 0.0125 0.105 0.352 1.416 2.14 2.781
2893 0.00625 0.816 2.881 11.352 26.904 28.869
5773 0.003125 6.375 24.442 88.836 322.29 284.488

Table 4.2: CPU time comparison for distance function calculation methods tested on the Cube experiment. CPU
time was measured in seconds.
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4.2 Searching for the middle surface (skeleton)

While analyzing the algorithms for distance function calculation, we realized that methods which track the
source of the distance in each grid point can be easily modified for the search of middle surfaces between data
sets. The problem of finding the skeleton of the input data, in other words, the identification of the medial axis,
occurs in other computational tasks, such as the optimal mesh generation [38], which uses the information about
the skeleton to densify or coarsen the computational grid in the computational domain. We propose how to use
the VDT and FSM algorithms to find the middle surface if we have more data sets in our computational domain.
Our approach is based on information propagation throughout which we track the source of the information.

First, let us discuss how the algorithms need to be modified if we deal with more data sets at the same time.
When we initialize the distance function we need to create a large enough computational domain to fit all data
sets and we will set the initial values for each separately. What we need to keep track of additionally, during the
initialization and the execution of the algorithms, is the information from which data set the values come from.
For VDT, the distance function values in the grid points of the computational domain are calculated as an exact
Euclidian distance between the grid point and an element of the input data set. For this reason, VDT keeps
track of the sources for distance calculation. In these sources, we will add the information to which data set the
source belongs to. FSM originally does not contain any information of sources, thus we needed to include this
in the proper manner. In every iteration of the algorithm when we cycle through the grid points, we take the
distance value from the neighboring points to solve a quadratic equation. We need to keep track, from which
neighbors the distance values enter the quadratic equation, thus we save the indexes (r,s, t), r,s, t ∈ {−1,0,1},
which identify them. When the solution is calculated for the equation we add up the indexes (r,s, t) and this
will show us which source to save for the current grid point from the sources of the 26 neighbors.

With this approach at the end of the algorithm, the grid points in our computational domain will be divided
into volumes belonging to the different data sets. To obtain the middle surface between the data sets we just
need to find the borders between these volumes. For this, we use two methods. For any number of data sets, we
can cycle through all points of the computational domain and find every point which has a neighbor belonging
to a different volume. If we apply this for every data set separately, for each of them we obtain the set of
points which are at the borders between the volumes. If we have just two data sets, we can treat the obtained
information about which data set the grid points belong to, as a function of values 0 or 1, and visualize the
isosurface of the function with the value 0.5. We can see this method in our first numerical experiment for
finding the skeleton of the distance function between two data sets.

4.2.1 Experiment 1: Sponge & Sphere

Let us have two point cloud data sets. The first is the Sponge point cloud data created with parametric
equations (2.3). The parameter r of the Sponge is 1.0. The second point cloud data is a sphere with a radius of
0.5. The distance between the centers of the two objects is 2.0. To create the point cloud data we used a step of
π

10 for both angles in the parametric equations. We calculated the distance function on a grid with dimensions
168×123×123 and voxel edge size 0.025. For the middle surface calculated by the Modified VDT algorithm,
we obtained the result seen in Figure 4.2 visualized as an isosurface together with the point cloud data sets.

When we tested the Modified FSM algorithm, we expected similar results but we discovered that it can
cause some issues in specific situations. With the regular initialization of the distance function calculated to
point cloud data on a grid with density higher than the point cloud density, we get an initial value which consists
of separated volumes around the points. We can see this in a 2D section for our experiment in the first picture
of the left column in Figure 4.3. The problem is that these gaps in the initial value do not contain any source
information and if we apply the Modified FSM algorithm this lack of information can propagate through our
computational grid. This leads to errors when we are trying to detect grid points on the borders of volumes
belonging to the different point cloud data sets or when we want to visualize the border as an isosurface of a
function. The isosurface with errors can be seen in the second picture of the left column in Figure 4.3.

To solve this problem, we need to modify also the initialization to point cloud data for the FSM algorithm.
The idea is to get a "continuous" subvolume for the initialized grid points. For this we need to increase the area
around the single points in which we calculate the distance function for the grid points. We need to find the
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minimum size of this area so that for two neighboring cloud points the areas will intersect. We found that for
this minimum size we can use the maximum minimal distance between all elements of a point cloud data. With
its value, we build a cube around every cloud point which determines the subvolume in which we will calculate
the exact distance values for the grid points. We can see the result of this modification in the right column of
Figure 4.3. In the first picture, visualizing a section of the new initial condition, we can see that now we have
a "continuous" subvolume of grid points. In the second picture we can see that the isosurface is now obtained
without any error.

In the following experiments we will show different cases how we can apply the described algorithms and
show how different the results from the two methods can be.

Figure 4.2: Experiment 1: Border between Sponge and Sphere point cloud data calculated by the VDT algorithm.

Figure 4.3: Experiment 1: Finding the border between Sponge and Sphere point cloud data by the FSM algorithm.
In the first picture of the left column, we see the section of the original initial condition in a constant y. In the
second picture of the left column, the incorrect isosurface between divided areas of the computational grid is
visualized. In the first picture of the right column, we can see the corrected initial condition. In the second picture
of the right column, the correct isosurface (skeleton) between divided areas of the computational grid is visualized.
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4.2.2 Experiment 2: Subsets of the Cube

We return to the case of the Cube data set which has coinciding points with the grid as described at the
beginning of Section 4.1. We will use the computational grid with the voxel edge size 0.05. The points on
every subset of the Cube (vertex, edge, wall) will be treated as a separate data set. The vertices are treated as
one-point data sets, the edges do not contain the vertices and the walls do not contain either the edges or the
vertices. Now in this setup, we apply both the Modified VDT and Modified FSM algorithms.

First we analyze the results for VDT. In Figure 4.4 we can see the borders of the volumes assigned to the
different subsets. For clearer visualization, we show just some of the separate borders with the outlines of the
Cube as white lines. We can identify by color to which subset of the Cube the points belong to. For the other
subsets, the volumes are symmetrical. What we need to notice is that to the inside of the Cube only information
from the walls propagates. From the vertices and edges, the information only propagates outward. For this
reason, the borders of the volumes inside of the cube are not uniform. While the volume borders on the outside
of the Cube can be separated into sets of points lying along different planes, on the inside of the Cube this is
not possible.

Let us compare this to the results of the FSM algorithm visualized in Figure 4.5. We can identify by the
colors that the information propagates inward from all subsets of the Cube. Inside of the Cube, the grid points
belonging to vertexes are along a line, for edges, the grid points are confined to a triangle, and for the walls,
they are inside a pyramid. In these results, the borders of the separated volumes are much clearer and sharper.
This difference can be explained by the fact that in the VDT algorithm we take into consideration only the
sources from 6 neighbors, ones next to the grid point, but in the FSM algorithm, the source information can
come from all 26 neighbors.

Figure 4.4: Experiment 2: Visualization of borders from sources on the Cube data set for the VDT method.



Figure 4.5: Experiment 2: Visualization of borders from sources on the Cube data set for the FSM algorithm.

4.2.3 Experiment 3: Two parallel surfaces

For the last experiment in this section we want to show how accurately the algorithms can find the middle
surface between two parallel data sets. For this purpose, we will use wawe-like surfaces generated as point
cloud data by functions

f (x,y) = 0.2∗ cos(x∗ y)+0.5,

f (x,y) = 0.2∗ cos(x∗ y)−0.5,

(x,y) ∈<−5.0,5.0 >×<−5.0,5.0 >

(4.1)

with a step of 0.05 for both x and y parameters.
We can see the visualization of the point cloud data generated by the first equation of (4.1) in the first

picture of Figure 4.6 In the second picture we can see the result of the calculations by FSM algorithm on a
computational grid with voxel edge size 0.025 represented as an isosurface. This isosurface lies between the
two parallel point cloud data sets. Visually the results for the two methods do not show noticeable differences,
thus we show only the results for FSM.

Figure 4.6: Experiment 3: Finding the border between two parallel wave-like point cloud data sets generated with
equations (4.1). In the first picture, we see the visualization of one point cloud data. The other one is identical just
shifted along the z axis. In the second picture, we visualize the isosurface which divides the computational domain
between the two point cloud data sets.
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5. Numerical experiments
5.1 Point cloud surface reconstruction

In this experiment we are testing the influence of different aspects of the mathematical model (2.1) with
advective velocity (2.2) on the final solution of point cloud surface reconstruction. We demonstrate how the
final solution can differ depending on the density of the computational background grid, by changing the size
of voxel edges h, and the influence of the curvature part of equation (2.1), given by the parameter δ . We
also compare the influence of methods for distance function calculation. As we have shown in Section 4.1 in
Table 4.1 the pairs of FSM, FMM and VDT, DP yield similar results, thus we will demonstrate results only
for one method of each pair, namely the FSM and the VDT algorithms. To be able to quantify our results we
calculate the mean and maximum directed Hausdorff distance between input point cloud data and the resulting
reconstructed surface, which is represented by a triangulated isosurface of the level set function u, solution of
the equation (2.1). For finding the triangulated isosurface we use the Marching Cubes algorithm [39] from the
Visualization Toolkit open source software system [40].

Let A = {a1,a2, ...,ap} be the set of points in the point cloud data and B = {b1,b2, ...,bp} the set of triangles
in the reconstructed surface. By this notation we can define the mean and the maximum directed Hausdorff
distance as

MeanHD(A,B) =
1
p

p

∑
i=1

min
b∈B
‖ai−b‖ ,

MaxHD(A,B) = max
a∈A

(
min
b∈B
‖a−b‖

)
,

(5.1)

where ‖...‖ is the distance between a point a and a triangle b. With HD(A,B) for every point in the cloud
we search for the closest triangle from the triangulated surface which gives us a good estimate of point cloud
representation by the triangulated surface. For the value of MeanHD(A,B) we calculate the average of all
distances and for the value of MaxHD(A,B) we take the largest distance.

For the experiment, we use a real-life data set representing a 3D scan of an archaeological find, an ancient
Sealer. We can see the visualization of the point cloud data in the first picture of Figure 5.1. This point cloud
data contains 42970 points with an average point density of 0.408695. The results are presented in Tables 5.1
and 5.2. In the tables we can see that, we choose the voxel edge sizes h ∈ {0.8,0.4,0.2,0.1}. This choice
was made to show h influence if it is bigger, equal, or smaller than the average point cloud density. For the
parameter δ we present results in the range 0.0 to 0.05, because higher values yielded no valuable information
and we already saw in the example presented in Figure 2.2 that a higher δ causes too big deformations in the
reconstructed shape.

Table 5.1 shows the results which were obtained by calculating the distance function d for the advective
velocity (2.2) by the FSM algorithm. Here we see that already for a grid density approximate to point cloud
density, we get good results, but when voxel edge size is twice and four times smaller the values of Hausdorff
functions are significantly better. We conclude from this that the best choice is a background grid with density
at least twice the density of the point cloud data. To analyze the influence of the parameter δ we need to take
a look at the values of function MaxHD(A,B). These values sharply decrease with δ greater than 0.0 and just
slowly increase with δ greater than 0.1. From this, we see that it is necessary to have a curvature influence
with a coefficient around δ = 0.01. The Table 5.2 shows the results which have been obtained by calculating
the distance function by the VDT method. We can see that the results show lower values for the Hausdorff
distance, thus we obtained more accurate reconstruction, but these differences are not large. In Section 4.1 we
have shown that on a background grid with high density the calculation of the distance function by VDT method
can take 2 to 3 times longer, thus one has to also consider the balance between accuracy and computational time.
We show the visualization of the reconstruction with parameters h = 0.1 and δ = 0.01 in pictures two and three
of Figure 5.1.



δ 0.000 0.01 0.02 0.03 0.04 0.05
h = 0.8; Grid dimensions: 70×115×95

MeanHD(A,B) 0.0892532 0.0893122 0.0928595 0.0964292 0.100009 0.103503
MaxHD(A,B) 2.18784 1.54144 1.54456 1.5622 1.5926 1.61414

h = 0.4; Grid dimensions: 139×229×189
MeanHD(A,B) 0.0387838 0.0376088 0.0394284 0.0413076 0.0431461 0.0449941
MaxHD(A,B) 1.38006 0.524292 0.652781 0.77268 0.844057 0.903317

h = 0.2; Grid dimensions: 277×457×377
MeanHD(A,B) 0.0179671 0.0178176 0.0188439 0.0199281 0.0210222 0.0221271
MaxHD(A,B) 0.71095 0.12891 0.149643 0.171411 0.201191 0.24425

h = 0.1; Grid dimensions: 553×913×753
MeanHD(A,B) 0.0114735 0.0100917 0.0108925 0.0116861 0.0124757 0.013269
MaxHD(A,B) 0.751527 0.0742524 0.0754402 0.0858235 0.0997837 0.114525

Table 5.1: Values for the Hausdorff distance calculated by equations (5.1) for the surface reconstruction of the
Sealer point cloud data. For the surface reconstruction the distance function d in (2.2) was calculated by the FSM
algorithm.

δ 0.000 0.01 0.02 0.03 0.04 0.05
h = 0.8; Grid dimensions: 70×115×95

MeanHD(A,B) 0.0881375 0.0880087 0.0914124 0.0948419 0.0982602 0.101619
MaxHD(A,B) 2.19765 1.55754 1.55219 1.57347 1.59943 1.61448

h = 0.4; Grid dimensions: 139×229×189
MeanHD(A,B) 0.0389542 0.0358571 0.0377077 0.0396454 0.0415404 0.0434863
MaxHD(A,B) 1.47521 0.513041 0.634763 0.772745 0.853498 0.925827

h = 0.2; Grid dimensions: 277×457×377
MeanHD(A,B) 0.0172233 0.0161051 0.0172925 0.0185797 0.0198954 0.0212255
MaxHD(A,B) 1.06208 0.135259 0.147878 0.171798 0.218427 0.265875

h = 0.1; Grid dimensions: 553×913×753
MeanHD(A,B) 0.0101758 0.00852418 0.00962756 0.0107071 0.0117708 0.0128195
MaxHD(A,B) 0.917726 0.0774886 0.0882566 0.096055 0.1161 0.13332

Table 5.2: Values for the Hausdorff distance calculated by equations (5.1) for the surface reconstruction of the
Sealer point cloud data. For the surface reconstruction the distance function d in (2.2) was calculated by VDT
algorithm.

5.2 3D image segmentation supported by the point cloud

In this experiment we used the model (2.1) with advective velocity (2.6) for our initial goal and segmented
the extra-embryonic tissues from the mouse embryo visualized in Figure 2.4 and Figure 2.5. To gain further
information on the 3D shape of both tissues, we decided to reconstruct both ExE and VE. As mentioned in
Chapter 2, the point cloud data for this microscopic image was obtained by rough manual identification of
border points in both tissues. This manual process took around 2 hours for each tissue in the whole 3D image
and was done by Antonia Weberling from the University of Cambridge. For this point cloud data, we applied
linear interpolation between neighboring points in every 2D slice to get a more accurate representation of the
3D surfaces. We applied our algorithm to solve (2.1) and present the results in Figure 5.2 visualized with the
supporting points.

In this example the, dimension of the 3D image was 512x512x58 voxels. The calculations were performed
on a computer with an Intel(R) Core(TM) i7-5820 CPU 3.30GHz processor and 128 GB RAM. We measured
the CPU times for both cases. For ExE part the calculation lasted 1017 seconds and for the VE part 1420
seconds. We also applied parallelization to our implementation with the utilization of the OpenMP library. For
parallel calculations we used 6 threads on the mentioned computer. After this the calculation of the ExE part
took 448 seconds and for the VE part 599 seconds.

21



22 CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.1: Visualizations for the Sealer data set. In the first picture we see the point cloud data. In the following
pictures, we see the surface reconstruction result with h = 0.1 and δ = 0.01. The 3D model is shown from different
views.

Figure 5.2: The reconstructed surface of extraembryonic ectoderm (ExE) and visceral endoderm (VE), visualized
together with the point cloud.
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