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Abstrakt 

Zber dát je v súčasnosti realizovaný najmodernejšími technológiami, ako LiDAR, GNSS, čo si vyžaduje 

použitie efektívnych matematických metód na ich spracovanie, analýzu až po zobrazenie 

v kartografickom zobrazení. Dizertačná práca sa zameriava na použitie matematických metód vo fáze 

kartografického zobrazovania a na optimalizáciu dosiahnutých skreslení. Aplikácia alternatívnych 

matematických metód pri tvorbe kartografických zobrazení je zaujímavým faktorom, ktorý ovplyvňuje 

optimalizáciu hodnôt skreslenia, ako aj ich rozloženie na ploche zobrazovaného územia. Táto práca 

prezentuje metodiku tvorby a porovnanie skreslení v kartografických zobrazeniach tvorených 

alternatívnymi matematickými metódami na Slovensku, predovšetkým riešením Laplaceovej alebo 

Poissonovej rovnice, ktoré vedú k minimalizácii integrálneho, resp. súčtového kritéria pre moduly 
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dĺžkového skreslenia. V práci je prezentovaná tvorba variačného konformného zobrazenia, 

minimaximálneho konformného zobrazenia a konformného kartografického zobrazenia na základe 

riešenia Poissonovej rovnice Ritzovou metódou, ktoré boli následne porovnané. Optimalizácia na základe 

riešenia Laplaceovej rovnice metódou konečných prvkov bola aplikovaná na štyri navrhované 

kartografické zobrazenia, a to na Lambertovho konformné kužeľové zobrazenie v normálnej polohe, 

konformné kužeľové zobrazenie v normálnej polohe s minimálnou strednou kvadratickou hodnotou 

dĺžkového skreslenia v normálnej polohe, konformné kužeľové zobrazenie vo všeobecnej polohe a 

konformné kužeľové zobrazenie s minimálnou strednou kvadratickou hodnotou dĺžkového skreslenia vo 

všeobecnej polohe. Tvorba variačného a minimaximálneho kartografického zobrazenia je založená na 

Airyho-Kavrajskom hodnotiacom kritériu, čo vedie k riešeniu Laplaceovej rovnice. Kartografické 

zobrazenie vytvorené Ritzovou metódou spĺňa Chebyshevovo kritérium, ktoré možno matematicky 

definovať Poissonovou rovnicou. Zobrazovacie rovnice uvedených kartografických zobrazení 

vychádzajú z Taylorovho radu za podmienky konformity ich zhody v komplexnej rovine. Metóda 

konečných prvkov sa ukazuje ako veľmi vhodná výpočtová metóda na riešenie Laplaceovej rovnice 

vyjadrujúcej geodetické a iné problémy nielen v inžinierskej praxi.  

Kľúčové slová: konformné zobrazenie, dĺžkové skreslenie, Laplaceova rovnica, Poissonova rovnica, 

variačné kritérium, Ritzova metóda, Metóda konečných prvkov 

Introduction 

The application of alternative mathematical methods in creating cartographic projections is an interesting 

factor that affects the optimization of distortion values, as well as their distribution in the area of the 

projected territory. This thesis presents the creation methodology and comparison of distortions in 

cartographic projections formed by alternative mathematical methods of minimizing the integral, resp. 

sum criterion for scale distortion in Slovakia, namely, the creation of the variational conformal projection, 

minimaximal conformal projection, and the conformal cartographic projection created by the Ritz 

method, and their optimizations based on solving the Laplace equation by the Finite Element Method. 

The modification was applied to four proposed cartographic projections, namely, Lambert’s conformal 

conic projection in a polar aspect, Conformal conic projection in a polar aspect with minimizing Root 

Mean Square of the scale distortion values, Conformal conic projection in an oblique aspect, and 

Conformal conic projection in an oblique aspect with minimizing RMS of the scale distortion values. The 

creation of the variational and minimaximal cartographic projection is based on the Airy-Kavraiskii 

criterion of evaluating the projection on the displayed area by solving the Laplace equation. The 

cartographic projection created by the Ritz method satisfies the criterion of Chebyshev, which can be 

defined mathematically by the Poisson equation. The Finite Element Method proves to be a very suitable 

computational method for solving the Laplace equation expressing geodetic and other problems not only 
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in engineering practice. The map equations of the mentioned cartographic projections are based on the 

Taylor Series of conditions for their conformity in the complex plane. 

1 Foundation of mathematical cartography 

One of the main tasks of mathematical cartography is to determine a projection of a projected territory 

in such a way that the resulting deformations of the original map elements are objectively minimized.  

Earth's exact shape is complex, and to project this shape, the complexity needs to be simplified by 

geometric surfaces, so-called reference surfaces. Mathematical cartography generally uses three different 

reference surfaces: plane, sphere, and ellipsoid. With an ellipsoid, a unique radius value for its equatorial 

and polar axes is specified, which approximates the overall Earth's shape better than with a sphere. Its 

surface is used to approximate the actual surface of Earth for geodetic positioning, and subsequently, for 

geodetic mapping.  The basic parameters of an ellipsoid include the semi-major axis a, the semi-minor 

axis b, and the first numerical eccentricity e. The position of the points on the reference ellipsoid is 

uniquely determined by their ellipsoidal latitude φ and ellipsoidal longitude λ. The simplest way to think 

of the Earth's shape is to model it as a reference sphere, which is a special case of surfaces of revolution 

because it has a constant radius R. The position of the points on the reference sphere is uniquely 

determined by their spherical latitude U and spherical longitude V. In the projection plane, we most often 

work with a rectangular coordinate system with the beginning in the point O, and the position of the points 

is expressed with the Cartesian coordinates x and y. In the plane also appear polar coordinates, the polar 

radius ρ, and the polar angle ε. 

The isometric coordinates are extremely important in cartography since the determination of these 

coordinates on surfaces leads directly to conformal mappings, probably the most important type of 

projection from a practical, as well as a theoretical, point of view. Isometric coordinates on the reference 

ellipsoid are the isometric longitude λ, which is equal to the ellipsoidal longitude, and the ellipsoidal 

isometric latitude q, which is given by the formula: 


















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











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e
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

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sin1

42
tanln

, 
(1.1) 

where e is the first numerical eccentricity for the reference ellipsoid. 

Isometric coordinates on the reference sphere are the isometric longitude V, which is equal to the 

spherical longitude, and the spherical isometric latitude Q, which is obtained from the formula (1. 9) if 

e = 0: 















 

42
tanln

U
Q

. (1.2) 
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Differential geometry (Goetz, 1970) shows that an isometric mapping of two surfaces, where all 

corresponding distances on both surfaces remain identical, can be obtained if and only if their Gaussian 

curvatures are identical. The transformation and the mapping process will always cause distortions of the 

original elements. However, some elements may be preserved in the transformation process, and the 

complete identity of the reference surface elements and their projected equivalents can never be achieved 

in cartographic projections (Frankich, 1982). 

The distortion of distances (scales) in the cartographic projection is characterized by the scale 

distortion factor, which is defined: 

,
d

d

s

S
m   (1.3) 

where dS is the geodetic element in the plane of the projection, and ds is its corresponding element on the 

reference surface.  

The angular distortion is defined as the difference between the image of the angle ω in the projection 

plane and the corresponding angle ω on the reference surface: 

.´    (1.4) 

The areal distortion is characterized in the cartographic projections by the areal distortion factor mpl, 

which is defined as the ratio of the areal element dP on the projection plane to the corresponding areal 

element dp on the reference area: 

.
d

d

p

P
m pl 

 (1.5) 

 

The conformal projections are the most frequently applied map projections in the geodetic coordinate 

systems. In the conformal projections, the angles, i.e., the azimuths and the bearings, are preserved. A 

necessary and sufficient condition of the conformal projections is the equality of the scale distortion in 

the direction of the parallels mp and the meridians mr, and zero distortion of the right angle of the meridians 

and parallels (Hoffmann, Hojovec, 1976). 

From the general relations for the cartographic projections (Urmajev, 1947) we get the so-called 

Laplace equation for the conformal projections: 

,0
lnln

2

2

2

2









VQ

  
(1.6) 

thus a second-order differential equation in which Q is the spherical isometric latitude (1.2) and μ is: 

QmUm sechcos  , (1.7) 

where m is the scale distortion factor and U is the spherical latitude.  

According to (1.7) ln(μ) is equal to: 

Um coslnlnln   or Qm coshlnlnln  . (1.8) 
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Substituting the expression (1.8) into the equation (1.6) we can convert the Laplace equation to the 

Poisson equation: 

f
V

m

Q

m









2

2

2

2 lnln , (1.9) 

where the right-hand-side f equals f = Q2sech .    

The evaluation of the cartographic projection is used for the selection and creation of the most 

advantageous projection for a given territory, but also the applied projections are evaluated. The 

evaluation criteria are divided into two types (Hojovec et al., 1987): 

 extreme and minimaximal, 

 variational (sum and integral criteria). 

In the thesis, the most frequently used variational criterion is the Airy – Kavraiskii criterion, which is 

formulated in the form: 

    ba mmh 222 lnln
2

1
 , (1.10) 

where in the conformal projections deals their equality m = ma =mb as follows: 

.ln 22 mh   (1.11) 

By applying the previous variational criteria at the point, we get a characteristic value for the whole 

displayed territory Ω of the reference surface, namely the so-called integral variational criterion: 

 


d
1 22 h
p

I
, 

(1.12) 

and p is the area value of the domain Ω, and m is the scale distortion factor in a map projection. For n 

points evenly distributed through the territory the sum variational criterion applies:  





n

i

h
n

I
1

22 1 . (1.13) 

2 Objectives of the dissertation thesis 

The aim of the presented dissertation thesis is the methodology of data transformation in geodesy and 

cartography computed by innovative mathematical methods, to find the optimal method for minimizing 

distortion according to the established criteria, to optimize the analysis of distortions in conformal 

cartographic projections for the territory of Slovakia by solving the Laplace equation or the Poisson 

equation by various numerical methods e.g.: 

 Method of Least Squares, which leads to variational and minimaximal projections, 

 the Ritz method,  

 Finite Difference Method (FDM), 
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 Finite Element Method (FEM), 

and comparison with projections in a given class. 

3 The optimization criteria in the creation of the conformal projections 

Selecting a suitable map projection for a mapping project is probably the most important and 

challenging aspect of working with projections. A modification of a cartographic projection is the process 

of obtaining new projections from already existing projections (Kessler, Battersby, 2019). 

Most solution methods of the Dirichlet problem in the mathematical cartography can be subdivided into 

two fundamentally different groups. There are suggested solutions of various methods to the optimization, 

e.g. the numerical methods, like the Ritz method, Method of Finite Differences, Method of Finite 

Elements, and the Method of Least Squares, which are based on the theorem of Chebyshev and Airy-

Kavraiskii and lead us to the variational and minimaximal type of projections. The first group of the 

solutions, in which the result is an approximate analytic function, i.e. an approximation of the harmonic 

function that perfectly satisfies the boundary conditions. The best known among these methods is the Ritz 

method, which was developed in 1908 by the German engineer Walther Ritz. The second group of 

methods yields a rigorous harmonic function that does not perfectly satisfy the boundary condition. The 

most suitable method from the second group is the Method of Least Squares, which leads to the variational 

and minimaximal type of cartographic projections. The boundary of the domain is usually approximated 

by a series of discrete points, the boundary will be a closed polygon and the line of constant scale 

distortion will be a smooth curve that approximates a polygon. 

Since the transformation will generally change the original proportions, it is important to adopt the 

scale distortions as the basic parameter for the evaluation of the cartographic projections. As a qualitative 

measure of the map projections, we decided to use the Airy-Kavraiskii criterion (1.13). 

The solution of the conformal projections consists of solving the Laplace equation or solving the 

Poisson equation with zero boundary conditions if for the searched function ln μ the following will apply 

at the boundary of the given area: 

  QVQu sechln,ln  . (3.1) 

The solution to this problem, called the Dirichlet problem, is a harmonic function. Finding such a 

harmonic function that exactly meets the required conditions from a mathematical point of view is 

difficult. Therefore, approximation solutions are used. One aspect to solve it is to use the so-called 

homogeneous harmonic polynomials derived from the function of a complex variable. 

The projection area for the optimization of the conformal cartographic projections was defined in 

various ways, such as a spherical geographic trapezoid, a spherical cartographic trapezoid, and an area 

using the real border of the country's territory. 
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3.1 Variational cartographic projections  

The creation of the variational cartographic projection is based on the Airy-Kavraiskii criterion for 

evaluating a projection in the projected area. In the variational projection, we consider its symmetry and 

the relative spherical latitudes V, resp. the relative cartographic latitudes D, determined from the standard 

spherical or cartographic meridian The basic principle of the variational projection is to find such a 

function ln(m) that minimizes the value of criterion I, which is satisfied in the conformal projection if the 

Laplace equation applies (1.6). where function u is: 

 
 (3.2) 

where ψj and τj are defined as (Hojovec, 1996): 

 (3.3) 

Two complex variables are equal if their real and imaginary components are equal. Then for ψj and τj, 

when choosing the value j e.g. j = 0 to j = 6 we obtain:  

 

 (3.4) 

The solution of the Laplace equation (1.6) for a symmetric territory is simplified:  

 
 (3.5) 

from where we express ln(m): 

  (3.6) 

From the system of n + 1 equations, we get the values of the coefficients a0,  a1, ..., an for the area 

determined by the extreme parallels Smin, Smax, and the meridians 0, Dmax. We calculate the scale 

distortion factor m from the relation (3.6).  

For a symmetric territory, where the solution of the Laplace equation is a function u according to (3.5), 

for the middle meridian D0, where D = 0, the following holds:  
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(3.7) 

In the derivation of map equations, we use relations (4) based on the notation of a conformal projection 

in a complex plane according to Gauss.   

3.2 Minimaximal cartographic projections 

We can talk about the minimaximal type of projection if one of the minimaximal criteria, such as the 

Chebyshev theorem, is used in deriving the projections. The aim is to find such a conformal projection 

for a given area that the values of the scale distortion factors on a closed boundary curve should be a 

constant value. The design of the minimaximal projection consists of the calculation of projection's 

coefficients aj, bj from the condition that the values of the scale distortion factors on the closed boundary 

curve differ as little as possible from zero. 

Subsequently, from the relation (3.6) we calculate the values of the scale distortion factors m at the 

boundary, and multiply them by a suitable scale distortion factor ms that the scale distortion values satisfy 

the condition: 

1
1

1

min

max 




m

m . (3.8) 

Then it is true that the undistorted isometric line is not at the boundary of the territory, but inside the 

territory, the values of extreme-scale distortions will be uniform and meet the minimaximal criterion. 

 

3.3 The Ritz method for solving the Poisson equation 

The Ritz method, which was developed in 1908 by the German engineer Walther Ritz, is one of the 

various ways of minimizing the Dirichlet integral. This is a direct method and relies on the approximate 

solution for boundary value problems; in our case, especially it is an approximate solution of the Poisson 

equations with zero BC (1.9), where the right-hand side of equation f equals  Qf 2sech . 

The solution will provide us with a function u (Q, V) which is continuous in the domain Ω, together with 

its partial derivatives of the first and second orders and it vanishes along the boundary   (Frankich, 

1982). In the literature (Frankich, 1982) is the methodology of the calculation of the cartographic 

projections using the Poisson equation solved by the Ritz method for the first equation from a family of 

functions u described. In this thesis, we formulate the calculation for the 4th equation of the family of 

functions u, which contains more coefficients, and clarify the results of the scale distortion values.  
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3.4. Numerical solutions of the Partial Differential Equations for the modification of cartographic 

projections 

The methods described above are not the only methods of finding a function u, as an approximate 

solution of the Laplace equation or the Poisson equation with zero boundary condition (BC). To solve 

Partial Differential Equations (1.6) and (1.9) the Finite Difference Method (FDM) and the Finite Elements 

Method (FEM) were used. 

Our goal was to obtain the scale distortion factor m within the given domain Ω based on solving the 

Laplace equation (LE) for the conformal projections (1.6), while at the boundary of the given domain Ω 

we prescribe the values of the scale distortion m (Ábrahámová, 2020).  

4 Application of the solving of the Laplace and the Poisson equations in optimization of the 

conformal projections in the territory of the Slovak Republic 

The focus of this thesis is the selection of a conformal cartographic projection for the territory of the 

Slovak Republic in terms of distortion values, using one of the mentioned, and the described optimization 

criteria in conformal projections.  

As input data, we used the ellipsoidal latitude φ and ellipsoidal longitude λ for 2,366 points of the border 

of the Slovak Republic on the ellipsoid GRS80. Transformation of the ellipsoidal coordinates φ, λ into 

the spherical coordinates U, V is necessary before projecting all types of used conformal projections. 

For the transformation, we used the Gaussian conformal projection with the following parameters, which 

apply to the Slovak Republic: k = 1.003315995637, α = 1.000640596751, and radius of the reference 

sphere R = 6,380,840.721 m. The standard parallel is φ0 = 48° 40 21.2520, and the standard meridian is 

λ0 = 19° 41 56.0940. The equations for the calculation of the parameters and the map equation of the 

Gaussian conformal projection of the ellipsoid to the sphere are given in (Vajsáblová, 2021): 
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(4.1) 

In the case of a spherical cartographic trapezoid, we need to introduce another step of the calculation, the 

transformation of the spherical geographic coordinates U and V into cartographic coordinates S and D 

with the equations (Vajsáblová, 2021): 
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where for the territory of the Slovak Republic, the position of the cartographic pole was proposed as 

follows (Vajsáblová, 2015): UK = -5° 53 41.1964, VK = 32° 8 18.5219.  

4.1 Variational projection, minimaximal projection, and the map projection with the Ritz method, 

and their comparison in the Slovak Republic 

The cartographic projections presented in this part of the section have in common that they are based 

on the solution of Laplace, reps. the Poisson equation and the sought functions of the map equations 

satisfy the Gaussian notation of conformal projections in the complex plane. 

We can define the computation area for the territory of the Slovak Republic in various ways. Next, we 

will focus on the proposals of the spherical trapezoid in the oblique aspect, the so-called spherical 

cartographic trapezoid.  

In the variational projection, our domain, i.e., the spherical cartographic trapezoid bounded by the 

cartographic parallels with the cartographic latitudes Smax, Smin and the cartographic meridians with the 

cartographic longitude Dmax, Dmin, was discretized by the dividing step 1, then, together with the discrete 

points of the real border of the Slovak Republic, we obtained n = 28,560 discrete points. For the spherical 

cartographic trapezoid thus defined, the values of coefficients aj are calculated (n = 6) as follows: 

a0 = 1.278069, a1 = -2.899471, a2 = -7.334089, a3 = 17.690263, a4 = 14.447583,  

a5 = -55.201458, a6 = 32.819466. 

Scale distortion was calculated according to formula (3.6), and its values range from -3.97 cm/km to 7.13 

cm/km. Finally, the values of the Airy-Kavraiskii sum criterion were calculated on a dense set of points 

evenly distributed on the territory of Slovakia based on equation (1.13), where h is from equation (1.11), 

and its value is 2.55 cm/km. The isometric lines of the scale distortion factor m in the considered number 

of polynomials n = 6 are shown in Fig. 4.1. In Fig. 4.2, we can see the Cartesian coordinates x and y for 

the spherical cartographic coordinates.  

 

 

 

 

 

 

 

 

 

Fig. 4.1 The isometric lines of the scale distortion factor m for the spherical cartographic trapezoid (n = 6) 
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Fig. 4.2 Cartesian coordinates x, y of the Slovak Republic and the cartographic network in the variational projection 

for the spherical cartographic trapezoid 

 
In the minimaximal projection, our domain, the spherical cartographic trapezoid was defined by 

n = 764 points at the boundary of the calculation area using a constant step 1ʹ on the cartographic parallel 

and the meridian. The coefficient values were calculated for n = 6, and are equal to: 

a0 = 0.814517, a1 = 3.723066, a2 = -46.617546, a3 = 136.932128, a4 = -180.325234,  

a5 = 108.062032, a6 = -22.416667. 

The scale distortion factor m was calculated according to the formula (3.6) for the set of points discretized 

by step 1ʹ in the territory of Slovakia (n = 28,560 points) and multiplied by the scale factor msm, and its 

values range from -5.9 cm/km to 5.9 cm/km. Finally, the values of the Airy-Kavraiskii sum criterion were 

calculated from equation (1.13), and its value is 3.23 cm/km. The isometric lines of the scale distortion 

factor m at the considered number of polynomials n = 6 are shown in Fig. 4.3. In Fig. 4.4, we can see the 

Cartesian coordinates x and y for the spherical cartographic coordinates. 

 

 
 

 

 

 

 

 

 

Fig. 4.3 The isometric lines of the scale distortion factor m for the spherical cartographic trapezoid for the 

minimaximal projection (n = 6) 
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Fig. 4.4 Cartesian coordinates x, y of the Slovak Republic and the cartographic network in the minimaximal projection 

for the spherical cartographic trapezoid 

In the application of the cartographic projection using the Poisson equation solved by the Ritz 

method, the fourth equation of the family of functions u is applied for the spherical cartographic trapezoid 

and also for the spherical cartographic trapezoid with the following substitution in equations V = D, 

ΔV = ΔD: 

   3
4

2
321

2222 QcVcQccVbQau   (4.3) 

Our domain, i.e. the territory of the Slovak Republic, is bounded by a spherical cartographic trapezoid 

in an oblique aspect. The mapping domain was discretized by step 1' (n = 28,560 discrete points). Since 

the spherical isometric latitudes Q appear in the equations for the calculation of the projection, the 

spherical cartographic latitudes S were transformed into the spherical isometric latitudes Q according to 

(1.2).  

The final values of the coefficients ci are as follows: 

 c1 = -217.2715, c2 = 92.9703 c3 = 351879.3272, c4 = -290512.7582. 

The scale distortion factor m was calculated on the relation u = ln(m). The resulting scale distortions 

range from -13.26 cm/km to 0 cm/km. The values of the Airy-Kavraiskii sum criterion were calculated 

from equation (3.2), and its value is 8.24 cm/km. The isometric lines of the scale distortion factor m in 

the cartographic projection using the PE solved by the Ritz method are shown in Fig. 4.5. In Fig. 4.6, we 

can see the Cartesian coordinates x and y for the spherical cartographic coordinates. 
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Fig. 4.5 The isometric lines of the scale distortion factor m in the cartographic projection using the PE solved by the 

Ritz method for the spherical cartographic trapezoid  

 

 

 

 

  

  

  

  

  

Fig. 4.6 Cartesian coordinates x, y of the cartographic projection using the PE solved by the Ritz method in the Slovak 

Republic for the spherical cartographic trapezoid 

From the results, we can see that the boundary conditions were preserved, because the boundary of the 

domain Ω, the Slovak Republic, which is bounded by a spherical geographic, resp. a spherical 

cartographic trapezoid is not distorted. To obtain more harmonical distortion, we decided to define 

boundary conditions inside the computational area. The zero BC was moved inside the spherical 

cartographic trapezoid by 17, then the limit values of the boundary conditions are as follows: 

- cartographic latitude: S1 = 33° 40 42.1307, S2 = 34° 48 5.7509, 

- cartographic longitude: D1 =  7° 51 55.6498, D2 = 11° 56 59.6088. 

The final values of the coefficients ci were calculated from the equation (3.50), their values are as 

follows: 

c1 = -302.6927, c2 = 122.8710, c3 = 1041150, c4 = -6422897. 
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The function u was calculated from the equation (4.3), and the scale distortion factor m was calculated 

based on the relation u = ln(m), and was subsequently quantified in cm/km. 

By the used dividing step (n = 28,560), the resulting scale distortions are based  

from -6.85 cm/km to 8.62 cm/km. The isometric lines of the scale distortion factor m of the cartographic 

projection using the PE solved by the Ritz method are shown in Fig. 4.7. Finally, the value of the Airy-

Kavraiskii sum criterion was calculated on a dense set of points evenly distributed on the territory of 

Slovakia according to equation (1.13) and its value is 4.13 cm/km 

Fig. 4.7 Isometric lines of the scale distortion factor m in the cartographic projection using the PE solved by the Ritz 

method for the modified spherical cartographic trapezoid 

In the cartographic projections analyzed in normal and oblique aspects, we calculated the characteristics 

of the scale distortions listed in Tab. 4.1. All of the projections are conformal, so they preserve the angles. 

The above analysis showed that the extreme values of the scale distortions are much smaller than the 

criterion of 10 cm/km required by the Geodesy, Cartography and Cadastre Authority of the Slovak 

Republic.  

Fig. 4.8 illustrates the percentage distribution of the scale distortion intervals in the variational projection 

for the spherical cartographic trapezoid (green column), the intervals in the minimaximal projection for 

the spherical cartographic trapezoid (orange column), and the map projection using the PE solved by the 

Ritz method of the territory of the Slovak Republic, bounded by a cartographic trapezoid (yellow column). 

It can be seen from the above graph that the variational projection in the oblique aspect, which minimizes 

the Airy-Kavraiskii criterion, optimizes the distribution of the distortions on the projected area. A 

comparison of the projections in the oblique aspect on the graph shows that the scale distortion in the 

variational projection, which is in the interval from -2 cm/km to 2 cm/km, is located in 43.3 % of the 

territory, and in the cartographic projection using the PE solved by the Ritz method, only in 26.5 %. The 

minimaximal projection in the oblique aspect, shown in the orange bar, is located for the interval from -
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2 cm/km to 2 cm/km in 36.46 % of the given territory. Also, the scale distortion in the variational 

projection with values in the interval from -4 cm/km to 4 cm/km, is found in almost the whole area, 

namely in 97.7 % of the territory, and in the cartographic projection using the PE solved by the Ritz 

method, only 52.4 % of the territory. For the minimaximal projection bounded by a spherical cartographic 

trapezoid, scale distortion values from the interval -4 cm/km to 4 cm/km are located in 73.42 % of the 

discretization area. The values show that there is less distortion in a larger area in the variational projection 

(2.6 cm/km), which is more effective than in the cartographic projection using the PE, which is created 

by the Ritz method (3.4 cm/km), and the minimximal projection (3.2 cm/km). 

Fig. 4.8 The percentage distribution of the scale distortion values in the territory of Slovakia according to the intervals 

in the mentioned projection in the oblique aspect 

Tab. 4.1 The characteristic values of the scale distortions in the analyzed cartographic projections in an oblique aspect  

Method of calculation 
Scale distortion 

[cm/km] 
Airy – Kavraiskii 

sum criterion 
[cm/km] From To 

Variational projection for the spherical 
cartographic trapezoid -4.0 7.1 2.6 

Minimaximal projection for the spherical 
cartographic trapezoid 

-5.9 5.9 3.2 

Cartographic projection using the PE solved 
by the Ritz method for the spherical 

cartographic trapezoid 
-6.8 8.6 4.1 
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4.2 Modification of the cartographic projections using the Laplace equation solved by the Finite 

Difference Method and the Finite Elements Method in the territory of the Slovak Republic 

The modification of the cartographic projections based on solving the Laplace equation by the Finite 

Element Method was applied to four proposed cartographic projections, namely, Lambert’s conformal 

conic projection in a polar aspect, Conformal conic projection with minimizing Root Mean Square of the 

scale distortion values in a polar aspect, Conformal conic projection in an oblique aspect, and Conformal 

conic projection with minimizing RMS of the scale distortion values in an oblique aspect. Next, we will 

focus on the proposals of the cartographic projections in the oblique aspect. 

At the beginning of the numerical solution, we obtained 211 discretization points with ellipsoidal 

coordinates φ, λ on the boundary of the domain ∂Ω. The ellipsoidal coordinates φ and λ were transformed 

into the Cartesian coordinates x and y. At the boundary, we prescribed the scale distortion factor m. The 

numerical solution was calculated in ANSYS 2019 R3 (ANSYS, 2019).  

In Tab. 4.2 there are listed the scale distortion values calculated in the proposal of the Conformal conic 

projection in an oblique aspect, the Conformal conic projection with minimizing RMS of the scale 

distortion values in an oblique aspect, and modifications of both projections using LE solved by 

numerical method FEM.  The numerical solution contains all values of the scale distortion factor m for 

all 52, 015 discrete points in the case of the Conformal conic projection in an oblique aspect, and for all 

65, 870 discrete points in the Conformal conic projection with minimizing RMS of the scale distortion 

values in an oblique aspect, which is the results of the numerical method FEM with Cartesian coordinates 

x and y of the domain Ω.  

In terms of the extreme criteria, the proposal of Conformal conic projection in an oblique aspect, 

which is designed using the criterion of the same absolute value of the scale distortion at the extreme and 

standard parallels, when the maximum scale distortion is ±5.4 cm/km, it has the best results. The 

maximum values of the scale distortion in the modification of mentioned projection using LE solved by 

FEM are almost the same, there are from -5.4 cm/km to +5.8 cm/km. The scale distortion values in the 

Conformal conic projection in an oblique aspect are in intervals from -3.6 cm/km to 7.6 cm/km. The 

values of the scale distortion are similar in the modified projection using LE solved by FEM, whose 

maximum values are from -4 cm/km to 8 cm/km.  

According to the Airy-Kavraiskii variational criterion applied to the territory of Slovakia, it has the best 

values for the modification of the Conformal conic projection with minimizing RMS in an oblique 

aspect using LE solved by FEM, namely 1.9 cm/km. The Conformal conic projection in an oblique 

aspect has according to the Airy-Kavraiskii variational criterion 4.0 cm/km. In comparison, this criterion 

is achieved in the modification of the mentioned projection 2.1 cm/km, which is twice as small as in the 

original proposal. According to Tab. 4.2, it can be said that the values obtained in the modified proposals 
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are the smallest, so they have a significantly more efficient distribution of scale distortions throughout 

the territory. 

In the following figures (Fig. 8 – 11), the x – coordinates are approximately in the interval from 

76,000 m to 505,000 m, and the y – coordinates are approximately in the interval from 24,000 m to 

218,000 m. Fig. 4.8 presents the isometric lines of the scale distortion factor m for the territory of the 

Slovak Republic in the proposal of the Conformal conic projection in an oblique aspect. The isometric 

lines of the scale distortion factor m in the modification of the Conformal conic projection in an oblique 

aspect using the Laplace equation solved by FEM are shown in Fig. 4.9. In Fig. 10, the isometric lines of 

scale distortion factor m in the Conformal conic projection with minimizing RMS of the scale distortions 

in an oblique aspect are presented. Fig. 4.11 shows the isometric lines of the scale distortion factor m for 

the territory of Slovakia for the modification of the mentioned projection using LE solved by the 

numerical method FEM. The undistorted isometric lines are marked in blue in all figures. 

Tab. 4.2 The scale distortion values of the domain Ω in the conformal conic projections in an oblique aspect and their 

modifications using LE solved by FEM 

Method of calculation 

Scale distortion 
values [cm/km] The Airy-Kavraiskii 

variational criterion 
From To 

Conformal conic projection in an oblique 
aspect 

-5.4  5.4  4.0 cm/km 

Modification of Conformal conic 
projection in an oblique aspect using LE 

solved by FEM  
-5.4  5.8  2.1 cm/km 

Conformal conic projection with 
minimizing RMS in an oblique aspect  

-3.6  7.6  2.7 cm/km 

Modification of Conformal conic 
projection with minimizing RMS in an 
oblique aspect using LE solved by FEM 

-4.0  8.0  1.9 cm/km 

Fig. 4.8 Isometric lines of the scale distortion factor m for the Conformal conic projection in an oblique aspect 
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Fig. 4.9 Isometric lines of the scale distortion factor m for modification of the Conformal conic projection in an 

oblique aspect using LE solved by FEM 

  

 

 

 

 

 

 

Fig. 4.10 Isometric lines of the scale distortion factor m for the Conformal conic projection with minimizing RMS in 

an oblique aspect 

 

Fig. 4.11 Isometric lines of the scale distortion factor m for modification of the Conformal conic projection with 

minimizing RMS in an oblique aspect using LE solved by FEM 
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The percentage representation of the values of the scale distortion on the territory of the Slovak 

Republic according to the given intervals (range 2 cm/km) in the conformal conic projections in an 

oblique aspect and their modifications using LE solved by FEM is shown in graph Fig. 4.12.  

Fig. 4.12 The percentage representation of the scale distortion values on the territory of Slovakia according to the 

intervals in the conformal conic projections in an oblique aspect and their modifications using LE solved by FEM 

The scale distortions in the Conformal conic projection in an oblique aspect are indicated by a dark 

blue column, which shows that almost 45 % of the area has a scale distortion in the range from -4 cm/km 

to 4 cm/km. The Conformal conic projection in an oblique aspect with minimizing RMS, which is shown 

in dark green, shows that up to 96 % of the projected territory has scale distortion values from the equal 

interval, which is twice as much as in the previous projection. We can see, that the modified Conformal 

conic projection with minimizing RMS in an oblique aspect has smaller distortion over a larger area. In 

graph Fig. 4.12, the modifications of the mentioned projections using the Laplace equation solved by 

FEM are expressed by light blue, resp. light green color. Based on these results we can see that projections 

by the numerical method for solving LE by FEM have a better distribution of the scale distortions 

throughout the territory.  

Conclusions 

The presented thesis on the optimization of the cartographic projections was conducted to determine 

the general approaches for obtaining the projections using the Airy-Kavraiskii criterion, especially to 

derive the coefficients for various cartographic projections for the territory of the Slovak Republic. The 

application of the alternative mathematical methods in the cartographic projection proved to be an 
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interesting factor in our analysis as was the optimization of distortion values, as well as their distribution 

on the area of the projected territory. Since the transformation will generally change the original 

proportions, it is important to adopt the distortions of the scales as the basic parameter for the evaluation 

of the cartographic projections. As the qualitative measure of the map projections, we decided to use the 

Airy – Kavraiskii criterion (1.13). 

The dissertation thesis presents methods for solving the Dirichlet problem in mathematical cartography, 

dividing them into two different groups. The first group presents solutions, in which the result is an 

approximate analytical function, i.e. the approximation of a harmonic function that perfectly satisfies the 

boundary conditions. One of the best known of these methods is the Ritz method based on the solution of 

Partial Differential Equations, especially on the solution of the Poisson equation. The second group of 

methods provides a rigorous harmonic function that does not perfectly satisfy the boundary condition. 

The most suitable method from the second group is the Method of Least Squares, which leads to the 

solution of the variational, resp. minimaximal conformal cartographic projections. The boundary of the 

mapping domain is usually approximated by a series of discrete points, so the boundary will be a closed 

polygon and the isometric line of the scale distortion will be a smooth curve that approximates the 

polygon. 

The variational projection, the minimaximal projection, and the cartographic projection using the 

Poisson equation solved by the Ritz method were compared. In the variational and minimaximal 

cartographic projections, we proceed from the evaluation of the projections according to some variational, 

resp. the minimaximal criteria described in section 1.5. The basic idea of the variational, resp. 

minimaximal projections is to find such a function ln(m), which minimizes the value of the Airy-

Kavraiskii criterion for conformal projections (1.13), which satisfies the solution of the Laplace equation. 

The cartographic projection, which uses the Poisson differential equation (1.9) with the right-hand side f, 

is solved using the Ritz method. These projections were created for the territory defined in various ways, 

specifically for the spherical geographic trapezoid, the spherical cartographic trapezoid, and the area using 

the real border of the country. 

In terms of the normal and oblique aspects, a comparison of the analyzed cartographic projections in 

the same aspects was performed. In the analyzed cartographic projections in a normal and an oblique 

aspect, we calculated the characteristics of the scale distortions. All projections are conformal, so they 

preserve the angles. The above analysis showed that the extreme values of the scale distortions are much 

smaller than the criterion ±10 cm/km required by the Geodesy, Cartography and Cadastre Authority of 

the Slovak Republic, except for the variational projection for a spherical geographic trapezoid. Our 

analysis showed that the variational projection of Slovakia achieves more satisfactory scale distortion 

values than the cartographic projection using the Poisson equation solved by the Ritz method. The 
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advantage of the Ritz method is that it is possible to choose a boundary condition for a predefined 

undistorted convex closed curve. 

The dissertation thesis also presents various types of conical projections suitable for the territory of the 

Slovak Republic, in the normal and oblique position (Vajsáblová, 2015) and their modifications using the 

Laplace equation solved by the numerical method, namely the Finite Element Method (FEM). The 

parameters of these conical projections are determined from the criteria for distortion of parallel circles 

in the projected area, as well as optimization of the scale distortion by the method of minimizing the Root 

Mean Square value of the scale distortion in the projected area using the Airy-Kavraiskii criterion. The 

scale distortion values in the cartographic projections are modified using the Laplace equation solved by 

FEM with boundary conditions on the basis of Cartesian coordinates x, y, and values of the scale 

distortions in the Slovak Republic given by its boundary. 

The performed analysis includes their mutual comparison, as well as a comparison with modified 

projections, which were created from the solution of the Laplace equation using the numerical method 

FEM. The presented analysis showed a positive effect of using the Laplace equation solved by the Finite 

Element Method on the scale distortion values in the proposed cartographic projections. From the 

comparison of the mentioned projections and their modifications using LE solved by FEM, based on the 

achieved extreme-scale distortions and the optimal distribution of the scale distortions in the area of the 

Slovak Republic, we conclude the following conclusions: 

- From the point of view of the normal and oblique aspect of the cartographic projections, the 

normal aspect, from which a smaller number of transformation steps results is more advantageous. It is a 

direct projection of the reference ellipsoid GRS80 on the projection plane, which also simplifies the 

reverse transformation steps. 

- In terms of the extreme scale distortions, the most effective scale distortions (± 5.4 cm/km) 

have the Conformal conic projection in the oblique aspect proposed in (Vajsáblová, 2015). 

- From the comparison of the scale distortions, we can conclude that all proposed cartographic 

projections, as well as their modifications using the Laplace equation solved by FEM, achieve lower 

values of scale distortions, and also the values of the Airy-Kavraiskii criterion than the currently used 

Křovák's conformal conic projection (from -10 cm/km to 11 cm/km). The proposed projections and their 

modifications using the Laplace equation have a significantly more efficient distribution of scale 

distortions throughout the territory. 

- From the point of view of the statistical distribution of the scale distortion on the area, the 

most advantageous projection shows the Conformal conic projection with minimizing RMS of the scale 

distortion values in an oblique aspect, while the isometric lines of the scale distortion are in the image of 

cartographic parallel circles. 
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- Modified projections using the Laplace equation solved by FEM have a minimized value of 

the scale distortions in the area using the Airy-Kavraiskii variational criterion (3.2 and 2.4 cm/km, 

respectively 2.1 and 1.9 cm/km). 

The dissertation was solved based on the theses specified in its assignment. From the 

theoretical benefits, we would like to highlight the derivation of specific members of the map equations 

for the cartographic projection using the Poisson equation solved by the Ritz method. Furthermore, we 

also consider the formulation of the methodology for cartographic projections using the PE solved by the 

Ritz method to be beneficial, especially for the 4th characteristically equation from the family of functions 

u (3.42), which contains more coefficients, and clarify the results of the scale distortion values. 

 We also consider the original application of the solution of the Laplace equation using FEM in the field 

of cartographic projections to be a contribution to the field of applied mathematics. In all applications, 

we have also shown the advantages and benefits of the proposed cartographic projections compared to 

the currently used Křovák's conformal conic projection. 

The presented thesis opens up further possibilities for solving the problem of cartographic projections 

using Partial Differential Equations, especially the Poisson equation and the Laplace equation. The 

advantage of the Ritz method is that it is possible to choose a boundary condition for a predefined 

undistorted convex closed curve. However, such a defined system with a larger number of points is very 

difficult to solve. In addition to the computational disadvantage, the polygon must be strictly convex. For 

this, convex, non-symmetric polygon function u, which leads to the solution, contains as many polynomial 

members as there are points in the convex boundary of the boundary, which leads to computational 

disadvantages.  
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