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Abstract

In this thesis, we develop methods of image segmentation and cell tracking, especially for cells that migrate
and change their shapes dynamically. The studied methods are applied to biological time-lapse images, mostly
for macrophages known as one of the fastest-moving cellular populations with complex shapes and movements.
For the first step in image segmentation, we design a segmentation method combining thresholding techniques
and the SUBSURF (subjective surface segmentation) method. Before applying the combination of thresholding
and SUBSURF, space-time filtering, which can preserve temporal coherence in time-lapse data is performed.
The presented segmentation method can capture cells that have a wide range of image intensities and shapes.
The accuracy of the segmentation is measured by using the Hausdorff distance, the IoU (Jaccard) index, and the
Sørensen–Dice coefficient between the semi-automatic and automatic segmentation. In the segmented images,
the approximate cell centers in every time frame are found by solving the time-relaxed eikonal equation. In the
next step, the partial trajectories for cells overlapping in the temporal direction are extracted. Then, the tangent
calculation at endpoint points of partial trajectories is carried out to link the trajectories for non-overlapping
cells. The accuracy of the cell tracking method is evaluated by counting the number of correct links, and the
trajectories obtained from the proposed method are compared with the manually extracted trajectories by using
the mean Hausdorff distance.

Keywords: Image segmentation, global thresholding, adaptive thresholding, subjective surface method, finite
volume method, semi-implicit scheme, cell tracking, time-relaxed eikonal equation, macrophages.

Abstrakt

V tejto práci vyvíjame metódy segmentácie obrazu a trekingu buniek, a to najmä pre bunky, ktoré dyna-
micky migrujú a menia svoj tvar. Navrhované metódy sú aplikované na biologické časopriestorové videá, najmä
na treking makrofágov, ktoré sú známe ako jedna z najrýchlejšie sa pohybujúcich bunkových populácií so zlo-
žitými tvarmi buniek a ich zmenami. Na segmentáciu obrazu navrhujeme kombináciu prahovania a metódy
subjektívnych plôch (SUBSURF), ktorým predchádza časopriestorová filtrácia videa, zachovávajúca časovú
koherenciu objektov v časopriestorových dátach. Prezentovaná segmentačná metóda dokáže zachytit’ bunky,
ktoré majú širokú škálu intenzít a tvarov. Presnost’ segmentácie sa meria pomocou Hausdorffovej vzdialenosti
medzi semi-automatickou a automatickou segmentáciou. Vo vysegmentovaných obrazoch sa následne v každej
časovej snímke nájdu približné stredy buniek pomocou riešenia časovo závislej eikonalovej rovnice. V d’alšom
kroku sa extrahujú čiastkové trajektórie pre bunky prekrývajúce sa v čase. Potom sa vykoná výpočet dotyčníc
v koncových bodoch čiastkových trajektórií, aby sa prepojili trajektórie pre neprekrývajúce sa bunky. Presnost’
metódy trekingu buniek sa vyhodnocuje určením počtu správnych prepojení v každom časovom kroku ako aj
pomocou strednej Hausdorffovej vzdialenosti medzi trajektóriami získanými navrhovanou metódou a manu-
álne extrahovanými trajektóriami.

Kl’účové slová: Segmentácia obrazu, globálne prahovanie, adaptívne prahovanie, metóda subjektívnych plôch,
metóda konečných objemov, semi-implicitná schéma, treking buniek, eikonalá rovnica, makrofágy.
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1. Introduction
The development of computer vision has contributed significantly to the analysis of biological data by pro-

viding automated tools such as the segmentation and tracking of cells. In biology, there have been many efforts
to understand cellular or subcellular dynamics in living animals by using images acquired by microscopes. The
automatic segmentation and tracking of individual cells are the first tasks to analyze cell behaviors objectively.

Identifying (segmentation) and tracking individual cells is challenging because cells divide, move, and
change their shapes during their journey in the developing embryo. A lot of efforts have been dedicated to
developing software to track cells during embryonic development and robust solutions are now available [1].
Some of these solutions are even compatible with the study of other situations where cells are either moving
in an organism (the heart) or in a moving organism (neurons in foraging worms [2]) but some specific cellular
populations, due to their very specific behaviors are difficult to identify and track during their journey within a
living animal. This is the case with macrophages which are one of the fastest-moving cellular populations with
more erratic shapes and movements.

Segmentation of macrophages has been previously studied performing a filter-based method [3], image-
based machine learning [4], anglegram analysis [5], etc. Also, deep learning-based segmentation methods have
been developed for various types of cells [6, 7, 8, 9, 10, 11]. U-Net[6, 8], Cellpose[10], and Splinedist[11]
are designed for segmentation of general shapes of cells in microscopy data and have shown a high perfor-
mance. However, it is still a challenging task to segment macrophages due to their varying nature and extreme
irregularity of shapes, and variability of image intensity inside macrophages. In [12], we have proposed a
macrophage segmentation method that combines thresholding methods with the SUBSURF method requiring
no cell nuclei center or other reference information. However, a problem occurs when attempting to segment
macrophages in time-lapse data, since the segmentation parameters are not always suitable for macrophages in
all time frames. In this thesis, first, we improve the ability to detect macrophages with low image intensity by
applying space-time filtering which considers the temporal coherence of time-lapse data [13]. Second, Otsu’s
method is implemented in local windows to deal with cases in which each macrophage has a substantially
different image intensity range. Similarly, as in [12], the SUBSURF method [14] is applied to eliminate the
remaining noise and to smoothen the boundaries of the macrophages resulting from space-time filtering and
the thresholding method (Figure 1.1). The performance of the proposed image segmentation is presented by
computed mean Hausdorff distances between the results of the semi-automatic method, the gold standard in
this thesis. Also, the perimeter, area, and circularity are compared between the proposed method and other
segmentation methods. This comparison shows the proposed method is the most similar to the results of the
gold standard.

Automatic cell tracking in microscopy images has been investigated and several different methods [15, 16,
17, 18, 19, 20, 21, 9, 22] have been proposed. The tracking algorithm by using linear assignment problem
(LAP) [15, 21] is computationally efficient and has shown good performance, especially for Brownian motion.
However, it can be less accurate if a large number of cells is densely distributed or if some cells suddenly move
toward the other nearby cells. The studies [18, 20] performed the cell tracking during the zebrafish embryoge-
nesis by finding a centered path in the spatio-temporal segmented structure. In [19], a workflow was designed,
from the image acquisition to cell tracking, and applied to 3D+time microscopy data of the zebrafish embryos.
Those methods show outstanding performance in the case of embryogenesis. Meanwhile, the keyhole track-
ing algorithm has proposed and been applied to red blood cells, neutrophils, and macrophages [23, 24, 25].
Furthermore, deep learning-based motion tracking in microscopy images has been studied for various types of
biological objects with different learning approaches [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. For instance, the
method in [28] trains the networks by utilizing semi-supervised learning to predict cell division. Usiigaci [30]
segments individual cells providing each unique ID to them with a Mask R-CNN model, then the method links
the cells by given IDs. The methods by training image sequences using LSTM (long short-term memory) net-
works have shown their performance for tracing nuclear proteins [31] and bacteria [33]. In [32], the algorithm
to solve linear assignment problems in tracking is trained with a deep reinforcement learning (DRL)-based
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method. Although various methods of cell tracking have been studied, there is still a need for more accurate
tracking of erratic movements, such as macrophages.

The cell tracking studied in this thesis deals with macrophages which undergo fast and complicated motion.
It results in non-overlapping cells in the time direction and, in many cases, one can observe a “random move-
ment”. This paper proposes a tracking method that covers the situations of a large number of macrophages and
their complex motion. The first step is to extract the cell trajectories from their shapes overlapping in time. By
this approach, we often extract only partial trajectories, because not always a segmented macrophage overlaps
with its corresponding cell in the next/previous frame of the video. Next, we connect endpoints of partial tra-
jectories corresponding to macrophages that do not overlap in time. To do this, the tangent calculation is used
to estimate the direction of the partial trajectories at the endpoints. Figure 1.1 illustrates briefly all steps of
the proposed method yielding macrophage tracking. The performance of the tracking method is analyzed by
measuring the mean Hausdorff distance between trajectories obtained from manual and automatic tracking. In
this measurement. Also, The mean accuracy of tracking is checked by averaging the ratio between the correct
links and total links over all time slices. The proposed tracking method showed a high mean accuracy of 97.4%.

The remaining part of the thesis is organized as follows. In Chapter 2, the proposed segmentation method
will be illustrated through the four subsections. The first subsection will explain space-time filtering as pre-
smoothing. The second and third subsections describe the local Otsu’s method, one type of local thresholding
technique, and the SUBSURF method. The last subsection of this chapter will propose the combination of the
threshold and SUBSURF method and apply the method to 2D+time macrophage data. Chapter 3 will present
the proposed algorithm of cell tracking with two steps. The first subsection will illustrate the time-relaxed
eikonal equation to approximate the center of the cells. The second subsection will show the algorithm for the
extraction of partial trajectories. Then, the connection of those partial trajectories will be described in the third
subsection of this chapter. The application in 2D+time and its quantitative comparison will be presented in the
last subsection.

Figure 1.1: Procedure of macrophage tracking in 2D+time data.

2. Image segmentation
For image segmentation, we design the method by combining threshold techniques and the SUBSURF

method. Before performing it, the time-lapse images are processed by using space-time filtering. This filtering
can keep the temporal coherence of objects so that making distinguishable the signals between objects and
the background noise. With the images obtained by space-time filtering, the filtered images are binarized by

4



2.1. SPACE-TIME FILTERING 5

applying a threshold technique, the local Otsu’s method. The local Otsu’s method enables us to capture the
objects having high variability of image intensity and shapes. Finally, the SUBSURF method removes the
artifact and remaining detected noise in the images obtained from the local Otsu’s method, and also smoothes
the boundary of objects.

2.1 Space-time filtering

The image sequence after space-time filtering can be represented by a real function u(t,x,θ) defined on
[0,T ]×Ω× [0,θF ], where t denotes the scale, in other words the amount of filtering, x is a spatial domain,
x ∈ Ω ⊂ RN , and θ denotes a particular time slice with the interval [0,θF ].
The equation of space-time filtering is represented by the following nonlinear diffusion,

∂u
∂ t

= clt(u)∇ ·
(
g(|∇Gσ ∗u|)∇u

)
(2.1)

with the initial condition given by

u(0,x,θ) = u0(x,θ). (2.2)

In |∇Gσ ∗u|, the “∗” stands for the convolution operator. The clt(u) function is defined as in [36, 13] by formula

clt(u) = min
w1,w2

1
(∆θ)2

(
|< ∇u,w1 −w2 > |+

|u(x−w1,θ −∆θ)−u(x,θ)|+
|u(x+w2,θ +∆θ)−u(x,θ)|

)
,

(2.3)

where w1, w2 are arbitrary vectors in the space and ∆θ is the time increment between discrete time slices. The
function g is the so-called edge detector function and is defined by

g(s) =
1

1+Ks2 , K > 0. (2.4)

Finally, Gσ is a Gaussian function with variance σ which is used for pre-smoothing by convolution. Let us
denote by un

k a numerical solution in the kth frame of the image sequence in the nth discrete filtering (scale) step
nτF with the step size τF , i.e.

un
k(x) = u(nτF ,x,k∆θ). (2.5)

By using the semi-implicit scheme [13], Equation (2.1) is discretized as follows

un+1
k −un

k

τF
= clt(un

k)∇ ·
(
g(|∇uσ ;n

k |)∇un+1
k

)
, (2.6)

where g(|∇uσ ;n
k |) = g(|∇Gσ ∗un

k |). From Equation (2.3), the discretization of clt(un
k) in the point x ∈ Ω can be

written as

clt(un
k) = min

w1,w2

1
∆θ 2

(
|< ∇un

k ,w1 −w2 > |+

|un
k−1(x−w1)−un

k(x)|+
|un

k+1(x+w2)−un
k(x)|

)
,

(2.7)

For space discretization, we use the finite volume method with finite volume (pixel) side h. By considering
that a point v is a center of a pixel (i, j) and let us denote by Vi j a finite volume corresponding to pixel (i, j),
i = 1, · · ·M, j = 1, · · ·N. The quantity clt(un

k) is considered constant in finite volumes. Then, Equation (2.6) is
integrated with the finite volume Vi j and by using Green’s theorem we get∫

Vi j

un+1
k −un

k

τF
dx = clt(un

k)
∫

∂Vi j

g(|∇uσ ;n
k |)∇un+1

k ·ni jdS, (2.8)
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where ni j is a unit outward normal vector to the boundary of Vi j. The gradient of u on the pixel edges can
be approximated by computing the average values of neighboring pixels. By using the diamond cell approach
[37], we compute the average of neighboring pixel values in the corners of the pixel (i, j) as follows (see also
Figure 2.1).

u1,1
i, j,k =

1
4
(un

i, j,k +un
i, j+1,k +un

i+1, j,k +un
i+1, j+1,k),

u1,−1
i, j,k =

1
4
(un

i, j,k +un
i+1, j,k +un

i, j−1,k +un
i+1, j−1,k),

u−1,−1
i, j,k =

1
4
(un

i, j,k +un
i−1, j,k +un

i, j−1,k +un
i−1, j−1,k),

u−1,1
i, j,k =

1
4
(un

i, j,k +un
i, j+1,k +un

i−1, j,k +un
i−1, j+1,k).

(2.9)

The gradient of un
i, j,k in nth filtering step, for a pixel (i, j) in kth frame of the image sequence, is computed at

the center of edges of the pixel [37],

∇
1,0un

i, j,k =
1
h
(un

i+1, j,k −un
i, j,k,u

1,1
i, j,k −u1,−1

i, j,k ),

∇
0,−1un

i, j,k =
1
h
(u1,−1

i, j,k −u−1,−1
i, j,k ,un

i, j−1,k −un
i, j,k),

∇
−1,0un

i, j,k =
1
h
(un

i−1, j,k −un
i, j,k,u

−1,1
i, j,k −u−1,−1

i, j,k ),

∇
0,1un

i, j,k =
1
h
(u1,1

i, j,k −u−1,1
i, j,k ,u

n
i, j+1,k −un

i, j,k),

(2.10)

where h denotes the pixel size. With the set of grid neighbors Ni, j that consists of all (l,m) of Vi, j, such that
l,m ∈ {−1,0,1}, |l|+ |m|= 1, the final discretized form of equation (2.1) is written as

un+1
i, j,k = un

i, j,k +
τF

h2 clt(un
i, j,k) ∑

|l|+|m|=1
g(|∇l,muσ ;n

i, j,k|)(u
n+1
i+l, j+m,k −un+1

i, j,k). (2.11)

Figure 2.1: Schematic picture of the space discretization. Here, ui, j,k denotes the value of the unknown function u
at a pixel position (i, j) in kth time slice. In a clockwise direction, the values of u at corners, u1,1

i, j,k, u1,−1
i, j,k , u−1,−1

i, j,k ,

and u−1,1
i, j,k , are defined. The gradients, ∇1,0, ∇0,−1, ∇−1,0, and ∇0,1, are computed at the center of edges.
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2.2 The local Otsu’s method

The global threshold method described above works well if there is only one object in the image or the range
of image intensity is similar between objects. However, it is needed that the image thresholds are inspected
locally when objects have huge variability of image intensity as mentioned at the beginning of the chapter. In
this section, we calculate the optimal thresholds for every pixel in a certain window of size s× s centered in a
pixel (i, j) by using the approach of the global Otsu’s method.

In the local window Wi j, the gray-level histogram is normalized and a probability distribution is regarded
as

pr = nr/N,
L

∑
r=0

pr = 1, (2.12)

where nr is the number of pixels of intensity r in Wi j, N = s2 and L is the maximum image intensity. Then, the
probabilities of background and foreground in Wi j are given by

ω0(Ti j) =
Ti j

∑
r=0

pr, ω1(Ti j) =
L

∑
r=Ti j+1

pr = 1−ω0(Ti j) (2.13)

and means of background and foreground are given by

µ0(Ti j) =
1

ω0(Ti j)

Ti j

∑
r=0

rpr,

µ1(Ti j) =
1

ω1(Ti j)

L

∑
r=Ti j+1

rpr =
µtot −µ0(Ti j)ω0(Ti j)

1−ω0(Ti j)
,

(2.14)

where µtot = ∑
L
r=0 rpr. Finally, the between-class variance related to the pixel (i, j) is written as

σ
2
B(Ti j) = ω0(Ti j)(µ0(Ti j)−µtot)

2 +ω1(Ti j)(µ1(Ti j)−µtot)
2 (2.15)

which simplifies to

σ
2
B(Ti j) =

(
µtotω0(Ti j)−µ0(Ti j)ω0(Ti j)

)2

ω0(Ti j)
(
1−ω0(Ti j)

) , (2.16)

and the optimal threshold T ∗
i j is given by

σ
2
B(T

∗
i j) = max

0≤Ti j<L
σ

2
B(Ti j). (2.17)

At the boundary of the image, mirroring is applied. In the case where the local window contains only the back-
ground, the histogram completely loses its bi-modality, with the threshold T ∗

i j representing some noise level.
To obtain a reasonable threshold, we determine whether the local window is only located in the background or
not by considering the relative difference between the mean levels of two classes that represent the object and
the background. Let us consider that µ0(T ∗

i j) and µ1(T ∗
i j) are the mean levels of the background and the object,

respectively, based on the threshold T ∗
i j . If |µ0(T ∗

i j)−µ1(T ∗
i j)|< εl , εl is very small, then the two classes cannot

be properly separated, and it is reasonable to conclude that the local window is located in the background. In
other words, the local window Wi j is considered as including an object when the following condition is fulfilled:

|µ0(T ∗
i j)−µ1(T ∗

i j)|
µ0(T ∗

i j)
> δ , (2.18)

where the relative difference is considered because the background noise level is different in each time slice.
Here, δ is a parameter to check whether the local window Wi, j contains macrophages or not. If there is a part
of macrophages in Wi, j, the relative difference in equation (2.18) will have a larger value than δ . Finally, the
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binarized images are obtained

B(i, j) =

{
1, I(i, j)> T ∗

i j and Equation (2.18) is fulfilled
0, otherwise

(2.19)

where I(i, j) is the image intensity of the pixel (i, j) and T ∗
i j is given by Equation (2.17).

2.3 The subjective surface segmentation method

The SUBSURF method can effectively complete missing parts of boundaries, join adjacent level lines, and
rapidly remove noise [14]. In particular, this method has previously been shown to be useful for segmenting
macrophage data [12]. The SUBSURF method is described by

ut = |∇u|∇ ·
(

g
∇u
|∇u|

)
, (2.20)

where u is a evolving level set function, and g is given by Equation (2.4) where s = |∇I0
σ | in Equation (2.20) and

I0
σ is the original image pre-smoothed by the Gaussian kernel. The SUBSURF is applied independently to the

images for every time frame. Therefore, we solve the unknown function u(t,x), where (t,x) ∈ [0,TS]×Ω,x ∈
Ω ⊂ RN , N = 2,3. The time discretization of Equation (2.20) is given by the semi-implicit scheme

un+1 −un

τS
= |∇un|ε∇ ·

(
g

∇un+1

|∇un|ε

)
, (2.21)

where τS is the scale step. Here, |∇un| is regularized using the Evans–Sprucks approach [38] as |∇un|ε =√
|∇un|2 + ε2, where ε is a small arbitrary constant. The space is discretized by a finite volume square grid

with a pixel side size of h. For Vi j, Equation (2.20) is integrated, and using Green’s formula we get∫
Vi j

1
|∇un|ε

un+1 −un

τS
dx =

∫
∂Vi j

g
∇un+1

|∇un|ε
·ni jdS, (2.22)

where ni j is a unit outward normal vector to the boundary of the pixel (i, j). In a similar manner as in Equation
(2.10), we use the diamond cell approach [37]. The average of neighboring pixel values in the four corners of
the pixel (i, j) are written as

u1,1
i, j =

1
4
(un

i, j +un
i, j+1 +un

i+1, j +un
i+1, j+1),

u1,−1
i, j =

1
4
(un

i, j +un
i+1, j +un

i, j−1 +un
i+1, j−1),

u−1,−1
i, j =

1
4
(un

i, j +un
i−1, j +un

i, j−1 +un
i−1, j−1),

u−1,1
i, j =

1
4
(un

i, j +un
i, j+1 +un

i−1, j +un
i−1, j+1).

(2.23)

The gradient un
i, j, in nth filtering step for a pixel (i, j), is approximated by

∇
1,0un

i, j =
1
h
(un

i+1, j −un
i, j,u

1,1
i, j −u1,−1

i, j ),

∇
0,−1un

i, j =
1
h
(u1,−1

i, j −u−1,−1
i, j ,un

i, j−1 −un
i, j),

∇
−1,0un

i, j =
1
h
(un

i−1, j −un
i, j,u

−1,1
i, j −u−1,−1

i, j ),

∇
0,1un

i, j =
1
h
(u1,1

i, j −u−1,1
i, j ,un

i, j+1 −un
i, j),

(2.24)
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Now we can define

Qlm;n
i j =

√
ε2 + |∇lmun

i j|2

Q̄lm;n
i j =

√
ε2 +

1
4 ∑
|l|+|m|=1

|∇lmun
i j|2,

(2.25)

where l,m ∈ {−1,0,1}, |l|+ |m|= 1, in the set of grid neighbors Ni, j. Therefore, the final discretized form of
Equation (2.20) is given by [39]

un+1
i j −un

i j =
τS

h2 Q̄lm;n
i j ∑

|l|+|m|=1
glm,σ

i j

un+1
i+l, j+m −un+1

i j

Qlm;n
i j

, (2.26)

where h2 is the pixel area and glm,σ
i j = g(|∇lmI0

i j;σ |).

2.4 Experiments with 2D time-lapse data of macrophages

In the dataset we experiment with, macrophages are imaged from 30 minutes post-amputation to 6 hours
post-amputation (0.5− 6 hpA) with the imaging time step of 2 minutes, z step of 1 µm, and the pixel size of
0.347 µm. Then, the 3D+time images are projected into the 2D+time images, where the three-dimensional
(3D) microscopy images are projected onto a plane with the maximum intensity of the 3D dataset in every
pixel selected. Due to the image acquisition speed, the exposition time and fluorescence intensity are reduced,
resulting in a low signal-to-noise ratio.

We first perform the histogram crop from the acquired images to ignore the noise effects from very high
image intensity in a small pixel area. After the histogram crop, the image intensity is scaled to the interval
[0,1] for applying space-time filtering. Then, the images obtained from space-time filtering are rescaled to the
interval [0,255] to simply perform the local Otsu’s method since histograms of images are usually described by
the discrete distribution in a finite interval. To apply the SUBSURF method, two types of images are used; one
is the original images after the histogram crop with the interval [0,1], and the other is the output of the local
Otsu’s method.

For solving space-time filtering and the SUBSURF method, the successive over-relaxation (SOR) method
[40] is used. In our simulations, the relaxation factor of the SOR method was set to 1.8. The calculation was
stopped when ∑

M
i=1 ∑

N
j=1 |un+1

i, j,k −un
i, j,k|< 0.001 for every k for space-time filtering and ∑

M
i=1 ∑

N
j=1 |un+1

i, j −un
i, j|<

0.01 for the SUBSURF method. The parameters we used are as follows: τF = 0.25, K = 100, σ = 0.1 for
space-time filtering, s = 50, δ = 0.5 for the local Otsu’s method, and τS = 0.25, K = 10, σ = 1 for the SUB-
SURF method.

Figure 2.2 shows five different macrophages and the processing of the proposed segmentation. The local
Otsu’s method preceded by space-time filtering can capture the approximate shape of macrophages that have
very weak image intensity. However, there can be some artifacts where pixels around the macrophages are also
detected. As shown in the third column of the figure, the SUBSURF method can remove those artifacts where
some detected noise around the objects and also make smoothen the inside and boundary of the macrophages.
Figure 2.3 presents the results of the automatic segmentation for five macrophages, showing it works reliably
for differently shaped macrophages no matter how complicated their boundaries are. In this figure, The fourth
and fifth rows show the segmentation yields a few segmented regions for a single macrophage, in which four
and two segmented regions, respectively. Therefore, it remains an open question of how to segment the whole
bodies of macrophages with some areas of weak image intensity.

The performance of the presented segmentation method is evaluated quantitatively by using the mean Haus-
dorff distance of automatic and semi-automatic segmentation results; for the definition of the mean Hausdorff
distance see equations (37)-(38) in [41]. The semi-automatic segmentation method, based on the Lagrangian
approach [42], is used to create the “gold standard” for comparison, see also [12]. For the quantitative compar-
ison, we choose one macrophage (the fifth macrophage in Figure 2.3). Also, the quality of the segmentation
is measured by using the IoU (Jaccard) index [43] and the Sørensen–Dice coefficient [44, 45]. We see that the
average of the mean Hausdorff distances for the macrophage is small compared to the size of macrophages. The
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IoU index and Sørensen–Dice coefficient obtained from the proposed method indicate the results show reason-
able performance. The perimeter, area, and circularity (4π ∗ area/perimeter2) are calculated for both automatic
and semi-automatic segmentation in Figure 2.4(d)–(f), showing the geometrical information obtained from the
proposed segmentation is close to the ones from the gold standard.

Figure 2.2: Five different macrophages and their processing by the proposed segmentation method. The first
column shows the original images where the macrophages are hardly recognizable. The second column shows
already recognizable macrophages in the images obtained by the local Otsu’s method preceded by the space-time
filtering. The last column gives the results after the last segmentation step, the application of the SUBSURF
method.
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Figure 2.3: Five different macrophages from the original (left) and the segmented images using the combination
of local Otsu’s with the filtered images obtained from space-time filtering and the SUBSURF method (right).
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Figure 2.4: The quantitative comparison for a chosen macrophage. (a): The mean Hausdorff distance from the gold
standard, (b): IoU (Jaccard) index, (c): Sørensen–Dice coefficient, (d): Perimeters of segmentations, (e): Areas of
segmentations, and their (f): circularities.

3. Cell tracking
In this chapter, we propose a method for cell tracking based on segmented images. The approximated cell

centers of all segmented cells are computed by solving the time-relaxed eikonal equation. Next, the approximate
cell centers form trajectories when the segmented cells overlap each other in the temporal direction to trace
the individual cell over time. Finally, these firstly formed trajectories are connected by computing a tangent
allowing us to estimate the direction of movement of the cells. The two trajectories are connected by using the
tangent calculation of a trajectory.

3.1 Detection of the approximate cell center

The time-relaxed eikonal equation is solved to find the cell centers in the segmentation results. As shown
in Figure 2.2 and 2.3, the segmentation does not always extract the whole shape of some cells (macrophages).
Therefore, the connected segmented subregions are used for obtaining the approximate centers of the cells, and
we will call the connected segmented subregions segmented regions in short. We approximate the centers of the
cells by finding the maxima of the distance function evaluated from the boundary of the segmented regions. The
distance function will be obtained by solving the time-relaxed eikonal equation with the computation restricted
only to the area of segmented regions. Since the centers—the local maxima of the distance function—are not
exactly identical to the real cell centers, they will be called “approximate cell centers”. We describe the solution
of the eikonal equation by the Rouy–Tourin scheme. The time-relaxed eikonal equation is written as

dt + |∇d|= 1. (3.1)

In every time slice θ ∈ [0,θF ], we solve equation(3.1) for the unknown function d(x, t,θ) where (x, t) ∈ Ω×
[0,TE ]. The equation is discretized by the explicit scheme using the step size τD, and the Rouy–Tourin scheme
is used for space discretization [46, 47, 48]. We solve Equation (3.1) in every 2D data slice. Let dn

i j(θ) denote
the approximate solution of Equation (3.1) at the time slice θ in pixel (i, j) at a discrete step tn = nτD. For

12
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every (i, j), the index set Ni j consists of all (l,m) such that l,m ∈ {−1,0,1}, |l|+ |m| = 1, and then Dlm
i j (θ) is

defined for any (l,m) as

Dlm
i j (θ) =

(
min

(
dn

i+l, j+m(θ)−dn
i j(θ),0

))2

. (3.2)

In addition,

M10
i j (θ) = max

(
D−1,0

i j (θ),D1,0
i j (θ)

)
,

M01
i j (θ) = max

(
D0,−1

i j (θ),D0,1
i j (θ)

)
,

(3.3)

are defined. Finally, the discretization of Equation (3.1) at time slice θ takes the following form,

dn+1
i j (θ) = dn

i j(θ)+ τD − τD

h

√
M10

i j (θ)+M01
i j (θ), (3.4)

where τD = h/2 is used for stability reasons. For the proposed cell tracking method, this equation is solved only
inside the segmented regions according to the following process. The first step is to set d0

i j(θ) = 0 inside the
segmented regions and d0

i j(θ) = BIG outside the segmented regions; here, the value BIG is much greater than
0. Next, the numerical scheme in equation(3.4) is applied only inside the segmented regions. dn

i j(θ) is fixed to
0 at the boundary of segmented regions by considering a pixel (i, j) is at the boundary in case that dn

i j(θ) ̸= BIG
and there is at least one neighboring pixel which fulfills dn

i+l, j+m(θ) = BIG. The computation is stopped when

the following condition is fulfilled ∑
θF
θ=0 ∑

M
i=1 ∑

N
j=1 |dn+1

i j (θ)−dn
i j(θ)|< εd .

3.2 Extraction of partial trajectories

The obtained approximate centers of the segmented regions are connected when the segmented regions
overlap in the temporal direction. The algorithm to connect the approximate cell centers in case of overlapping
segmented regions using the backtracking approach is introduced in this Section. The algorithm yields the
trajectories that connect the cells overlapping in the temporal direction—all these trajectories will be called
partial trajectories.

Three sets of values will play a major role in the algorithm: di j(θ), Fi j(θ), and Cl(θ), where (i, j) denote
a pixel position, θ denotes a time slice and l denotes the cell center number.

First, the distance function value di j(θ) indicates whether a pixel is inside a segmented region or not. The
pixel (i, j) at time slice θ is positioned inside the segmented region if di j(θ) ̸= BIG. Second, Fi j(θ) = 1
indicates the pixel (i, j) belongs to the segmented region which is already connected to another cell by a partial
trajectory. Lastly, Cl(θ) represents the selected cell center, l = 1, ...,Nθ , where Nθ is the total number of
segmented regions at the time step θ . With these definitions, the steps for linking the approximate cell centers
are as follows:

1. For all pixels (i, j) and all time steps θ , Fi j(θ) is set to 0 and di j(θ) is computed by the method equa-
tion(3.4).

2. Let θL be a time slice and let θL = θF initially. The values of the distance function (di j(θL) ̸= BIG)
inside every segmented region in time slice θL are inspected and the pixel having the maximal value
of distance function inside the segmented region is found and designated as approximate cell center,
Cl(θL) =

(
Cl

1

(
θL),Cl

2(θL)
)
, l = 1, ...,Nθ .

3. Let θ = θL. In a backtracking manner, we look for overlapping segmented regions by performing steps
(a)-(b): for l = 1, ...,Nθ , Cl(θ) is projected onto the spatial plane of the previous time slice θ − 1. Let
denote the projected point as P(Cl(θ)), where P(Cl(θ)) =

(
Cl

1(θ),C
l
2(θ),θ −1

)
.
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(a) The case when an approximate cell center is projected inside some segmented region:
If di j(θ − 1) ̸= BIG for (i, j) =

(
Cl

1(θ),C
l
2(θ)

)
, the approximate cell center at θ − 1 is found by

searching for the maximum value of the distance function inside the segmented region at time θ −1,
and the approximate cell center is denoted by Cl(θ −1) =

(
Cl

1(θ −1),Cl
2(θ −1)

)
.

Also, Fi j(θ − 1) is changed to 1 for all pixels (i, j) inside the corresponding segmented region.
After finding the approximate cell center Cl(θ − 1), it is connected with Cl(θ), forming a section
of the partial trajectory (see Figure 3.1).

(b) The case when the projected cell center is not inside of any segmented region at time θ −1:
If di j(θ − 1) = BIG for (i, j) =

(
Cl

1(θ),C
l
2(θ)

)
, let Sl(θ) be a set of all pixels (i, j) belonging

to the lth segmented region at time θ . Then di j(θ − 1) is inspected for all pixels (i, j) in Sl(θ).
The inspection is stopped if di j(θ − 1) ̸= BIG for some (i, j) = (p∗,q∗) and denoting such point
Sl

p∗,q∗(θ), or if all pixels in Sl(θ) are inspected without finding such a point.

i. If a point Sl
p∗,q∗(θ) exists, the approximate cell center Cl(θ − 1) =

(
Cl

1(θ − 1),Cl
2(θ − 1)

)
is

found like in the step 3(a) but starting from P(Sl
p∗,q∗(θ)), and Fi j(θ −1) is set to 1 for all pixels

inside the segmented region at time θ −1 to which P(Sl
p∗,q∗(θ)) belongs to. After finding the

approximate cell center, Cl(θ − 1) is connected with Cl(θ), forming a section of the partial
trajectory.

ii. If a point Sl
p∗,q∗(θ) does not exist, the approximate cell center is not designated because there

is no overlap of the segmented region l at time θ with any segmented region at time θ −1.

4. Step 3 is repeated by decreasing θ by one until θ = 1.

5. θL is decreased by one and di j(θL) and Fi j(θL) are checked for all (i, j).
If there is a pixel that fulfills di j(θL) ̸= BIG and Fi j(θL) = 0, we consider that the pixel is inside a
segmented region at θL non-overlapping with segmented regions at θL +1. The approximate cell center
of the region is found like in step 2, and then steps 3 and 4 are repeated.

6. Step 5 is repeated until θL = 1.

Let us note that in steps 3(a) and 3(b), if there are several maxima of the distance function in the inspected
segmented region, then the cell center is chosen as the first one found. In step 3, the trajectories can remain
disconnected if there is no overlap of cells and condition 3(b)-ii is fulfilled. In the top panel of Figure 3.3,
such partial trajectories are depicted inside the 3D spatial-temporal structure formed by stacking segmented
regions in the temporal direction. This shows that the algorithm works correctly for the overlapped cells, and
the extracted partial trajectories appear as expected.

Figure 3.1: Schematic picture of step 3(a) of the proposed algorithm. The cells in the top-left panel are amplified
along the time axis for better visualization. The blue dot denotes the projected coordinate.
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Figure 3.2: Schematic picture of steps 3(b) of the proposed algorithm. The cells in the top-left panel are amplified
along the time axis for better visualization. The yellow dot denotes the inspected coordinate where di j(θ − 1) ̸=
BIG. Step 3(b)-i is shown in the bottom panels.

Figure 3.3: Top: Partial trajectories of several macrophages. Bottom: Connected trajectories from the partial
trajectories in the top panel. The time axis is amplified for better visualization.

3.3 Estimation of cell movement direction

The tangent approximation by the backward finite difference is used to estimate the position of a point in the
next time step of a partial trajectory. Similarly, the forward finite difference for the tangent calculation is used
for the estimation of the point at the previous time step of the partial trajectory. In the tangent calculation, third-
order accuracy is maximally considered, and thus there are three forms of tangent approximation depending on
the number of points in the partial trajectory. The tangents computed with the third order accuracy using the
backward and forward finite difference approximations are given by [49]
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V b(rθ ) =
1

∆θ

(
11
6

rθ −3rθ−1 +
3
2

rθ−2 −
1
3

rθ−3

)
,

V f (rθ ) =
1

∆θ

(
−11

6
rθ +3rθ+1 −

3
2

rθ+2 +
1
3

rθ+3

)
,

(3.5)

where ∆θ means the size of the time slice difference, and rθ = (xθ ,yθ ) is the point of the partial trajectory in
the time slice θ . Similarly, second and first-order accuracy approximations for backward and forward finite
differences are given by

V b(rθ ) =
1

∆θ

(
3
2

rθ −2rθ−1 +
1
2

rθ−2

)
,

V f (rθ ) =
1

∆θ

(
−3

2
rθ +2rθ+1 −

1
2

rθ+2

)
,

(3.6)

and

V b(rθ ) =
1

∆θ
(rθ − rθ−1) ,

V f (rθ ) =
1

∆θ
(−rθ + rθ+1) .

(3.7)

Let us consider a partial trajectory with a time step range [a∆θ ,b∆θ ], a,b integers, and denote the positions of
the cell center at a∆θ and b∆θ by ra and rb, respectively. Then, the position of the cell center at (a−1)∆θ can
be estimated from the tangent at time step a∆θ . For example, if the partial trajectory contains more than three
points, the tangent obtained by using the forward finite difference at a∆θ is given by

V f (ra) =
1

∆θ

(
−11

6
ra +3ra+1 −

3
2

ra+2 +
1
3

ra+3

)
(3.8)

and the tangent at (a−1)∆θ would be

V f (ra−1) =
1

∆θ

(
−11

6
ra−1 +3ra −

3
2

ra+1 +
1
3

ra+2

)
. (3.9)

Assuming T f (ra−1) = T f (ra), i.e. the uniform directional motion of non-overlapping macrophages, we see that
ra−1 is the only unknown in the equation and can be easily obtained. Similarly, the tangent at time steps b∆θ

yields the estimated cell center at time step (b+ 1)∆θ using the backward finite difference. So, the estimated
points on trajectories in the time slice without overlap of cells are given by

ra−1 =− 6
11

V f (ra) ·∆θ +
18
11

ra −
9
11

ra+1 +
2
11

ra+2, b−a > 2,

ra−1 =−2
3

V f (ra) ·∆θ +
4
3

ra −
1
3

ra+1, b−a = 2,

ra−1 =−V f (ra) ·∆θ + ra, b−a = 1,

(3.10)
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and

rb+1 =
6
11

V b(rb) ·∆θ +
18
11

rb −
9
11

rb−1 +
2
11

rb−2 ,b−a > 2,

rb+1 =
2
3

V b(rb) ·∆θ +
4
3

rb −
1
3

rb−1 ,b−a = 2,

rb+1 =V b(rb) ·∆θ + rb ,b−a = 1.

(3.11)

3.4 Connection of partial trajectories

The connection of partial trajectories is carried out when the estimated center of the cell res given by ra−1 or
rb+1 in equations (3.10) or (3.11), is positioned near the end point re of some existing partial trajectory ending
at time slice (a−1)∆θ or starting at (b+1)∆θ . It means, we check the condition

|res − re| ≤ ∆r (3.12)

where ∆r is a parameter, and if it is fulfilled then the partial trajectories are connected.
Figure 3.4(a) shows two partial trajectories denoted by α and β . The red dot in the figure represents the

estimated cell center res;α computed from the α trajectory with the backward finite difference approximation.
The α and β trajectories are connected if the beginning point of the β trajectory and the estimated cell center
from α trajectory is located within the neighborhood ∆r; Figure 3.4(b) shows the connected trajectory in such
case. The condition (3.12) is written for the case when the difference of time slices between endpoints of
partial trajectories is equal to 1. However, the partial trajectories are connected similarly when the difference
of time slices is equal to 2, i.e. if two estimated points obtained from two partial trajectories (one in a forward
manner and one in a backward manner) are located in the same time slice and within the ∆r neighborhood. The
connection of partial trajectories by using the above approach is shown in the bottom panel of Figure 3.3.

Furthermore, the tangent calculation is also used to connect the partial trajectories if their last points are
located close to each other in several time slices. It can happen if the segmentation of a single macrophage
contains several fractions in a few time slices. Figure 3.4(c) shows two such partial trajectories γ and λ .
As shown in the blue circle, there are three common time slices where γ and λ have trajectory points close
to each other. To connect those kinds of partial trajectories, we again calculate the estimated point of the
partial trajectory using the tangent approximation and check if there is a point r j of another trajectory in a close
neighborhood of the estimated point. If yes, then also a difference between the time slice of r j and the time slice
of the endpoint re of its trajectory is checked. In other words, we check the number of common time slices Θc

where two close trajectories appear simultaneously. For instance, in the case of Figure 3.4(c), Θc = 3. Finally,
two trajectories are connected if the following two conditions are fulfilled: |res − r j| ≤ ∆r2 and Θc ≤ ∆rθ . In
Figure 3.4(d) we plot by the red line such connected trajectory.
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Figure 3.4: Two different partial trajectories α and β (a), and the connected trajectory containing α and β (b). The
blue circles show the last point of the partial trajectory α and the beginning point of β . Two different trajectories
γ and λ (c), and the connected trajectory containing γ and λ (d). The blue circle shows the points of the two
trajectories in the common time slices.

3.5 Experiments with 2D time-lapse data of macrophages

The segmented images obtained from the segmentation in the previous chapter are used for experimenting
with the proposed tracking method. For this dataset, the condition (3.12) with ∆r = 60 was first used to connect
the partial trajectories and then parameters ∆r2 = 120 and ∆rθ = 5 were used to avoid closed trajectories due to
macrophage segmentation split. We note that ∆r2 can be chosen less sensitively than ∆r since many trajectories
are already connected.

The final trajectories in the whole spatial domain are visualized in Figure 3.5. There are 9 detected
macrophages at the beginning and 12 macrophages are shown at the last time slice as new macrophages appear
and disappear over time. The site of the wound is positioned on the right side and many macrophages migrate
toward the wound. Especially, the macrophage denoted by violet located at the top of the pictures from θ = 115
to θ = 156 shows very fast movement which implies the macrophage yields many partial trajectories, and our
method enables us to connect them.

In the second row of the figure, the two trajectories (purple and brown) inside the blue rectangle are located
in the same cell, but they are shown differently due to the problem that the segmentation cannot extract the
entire shapes of macrophages, and their number of the common time slices Θc is greater than 6.

The number of trajectories before and after the first connection by using condition (3.12) (see also Figure
3.4(a)–(b)) was 930 and 234, respectively. After the second connection of closed common trajectories (see Fig-
ure 3.4(c)-(d)), the number of extracted trajectories decreased again significantly to 69. In addition, the average
length of extracted trajectories after the second connection increased from 69.53 to 363.29 in pixel units.

The mean Hausdorff distance computed for three selected trajectories, see panels (a)–(c) of Figure 3.6, was
3.13, 4,35, and 2.40 in units of pixels, which is very low in comparison to the average length of trajectories and
it shows again the high accuracy of tracking for this dataset. The comparison of the average distance computed
by averaging the Euclidean distance between points at each time frame of manual and the proposed tracking is
presented in Table 3.1. This distance is bigger than the mean Hausdorff distance but still small compared to the
average size of macrophages.

Further check of automatic tracking accuracy we performed by counting the number of correct and wrong
links in every time slice by visual inspection. We define the time slice tracking accuracy as the ratio between the
number of correct links and the total number of links detected visually in one time slice in a forward manner,
and we define the mean accuracy of tracking as the average of the tracking accuracy over all time slices. As a
result, the mean accuracy of tracking was 0.974.
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Figure 3.5: Final trajectories in eight subsequent time slices. The final time slice is θF = 156. Here, the size of the
whole spatial domain is 1758∗1306 pixels.
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Figure 3.6: Extracted trajectories of three different macrophages from manual and automatic tracking methods.
The numbers of points of (a)–(c) are 57, 109, and 157, respectively. The blue lines show manual tracking in Fiji
[50], and the red lines show our proposed tracking method.

# of points dH [px] davg [px] Lmanual [px] Lauto [px]

(a) 109 3.13 17.33 2425.88 3026.21

(b) 57 4.35 19.78 1887.99 1920.75

(c) 157 2.40 15.71 2039.42 1720.62

Table 3.1: The two different types of the distance between trajectories obtained from manual and proposed tracking.
Here, dH and davg denote the mean Hausdorff distance between two curves and the average of the Euclidean
distance between two points at each time slice. Lmanual is the total length of trajectories by manual tracking, and
Lauto is the total length obtained from proposed tracking.
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