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ABSTRACT

Dynamic interfaces arise in a wide range of modern ap-
plications and require careful numerical treatment. A robust
approach to modeling their evolution are the level set meth-
ods, where the interface is implicitly represented as the zero
level set of a function. While these methods naturally handle
topological changes and can operate on structured grids, they
introduce significant computational challenges when combined
with the unconditionally stable implicit time discretizations.
In particular, the governing Hamilton-Jacobi and Hamilton-
Jacobi-Bellman-type equations are nonlinear, often curvature
dependent, and difficult to solve efficiently, especially in higher
dimensions.

This thesis develops numerical methods aimed at increasing
the effectiveness of level-set-based simulations by improving
the trade-off between accuracy, stability, and computational
cost. First, we introduce an efficient upwind-based scheme for
curvature-driven motion, compatible with fast sweeping solvers,
and supported by a detailed stability analysis. Second, we
propose a compact high-order scheme that leverages a partial
inverse Lax-Wendroff procedure to achieve high-resolution and
reduced oscillations with minimal computational overhead. Fi-
nally, we present a novel predictor-corrector method achieving
third-order accuracy in both space and time, which remains
stable and non-oscillatory for arbitrary Courant numbers and
extends naturally to higher dimensions.

All proposed methods use implicit time discretization to en-
sure unconditional stability, with spatial discretizations carefully
constructed to retain computational efficiency by minimizing
or avoiding the need for costly implicit solvers.
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ABSTRAKT

Dynamické rozhrania sa vyskytuji v mnohych modernych
aplikaciach a vyzaduja si dokladné numerické spracovanie. Ro-
bustnym pristupom k modelovaniu ich vyvoja st metody -
roviiovych mnozin (level set metody), kde je rozhranie im-
plicitne reprezentované ako mnozina nultej trovne funkcie.
Hoci tato metoda prirodzene zvldda topologické zmeny a fun-
guje na Struktirovanych mriezkach, prinaSa znacné vypoctové
problémy, $pecialne pri pouziti bezpodmiene¢ne stabilnych im-
plicitnych casovych diskretizacii. Napriklad, riadiace rovnice
Hamiltonovho-Jacobiho a Hamiltonovho-Jacobiho-Bellmanovho
typu st nelinearne, ¢asto zavislé od zakrivenia rozhrania a je
narocné ich efektivne riesit, najméa vo vyssich dimenziach.

Tato praca sa zaoberd vyvojom numerickych metéd za-
meranych na zvySenie efektivnosti rieSenia pomocou metod
drovihovych mnozin zlepsenim kombinacie presnosti, stability
a vypoctovej narocnosti. Najprv predstavime novia efektivnu
schému zaloZenid na takzvanej upwind aproximécii pre pohyb ri-
adeny krivostou, kompatibilnt s rychlymi metédami pre riesenie
systémov rovnic, ako napriklad takzvana fast sweeping metdda,
a podrobne popiSeme analyzu stability tejto metody. Po druhé,
navrhneme kompaktnii schému vyssieho rddu presnosti, ktoréa
vyuziva ¢iastocnu inverznu Lax-Wendroffovu procedtru na dosi-
ahnutie vysSej presnosti a zniZzenie oscilacii s minimalnymi
vypoctovymi nakladmi. Nakoniec predstavime nova metoédu
prediktora a korektora, ktora dosahuje presnost tretieho radu
v priestore aj Case, zostava stabilna, zabranuje oscilaciam v
gradiente rieSenia, a to pre lubovolné Courantovo ¢islo. Navzse
je prirodzene rozsiritelna na viacdimenzionilne modely.



Vsetky navrhnuté metédy pouzivaju implicitnt ¢asovi diskretiza-
ciu kvoli zabezpeceniu bezpodmienecnej stability, pricom priestorova
diskretizacia je starostlivo zostavena tak, aby sa zachovala
vypoctova efektivnost minimalizovanim potreby nakladnych
implicitnych riesitelov.
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Introduction

Dynamic interfaces play a crucial role in the world of modern
mathematical applications across all spatial dimensions. A
robust approach to modeling their evolution is the level set
methods [14, 16], where the interface is implicitly represented
as the zero level set of a function. Although these methods
naturally handle topological changes and can operate on struc-
tured grids, they introduce significant computational challenges
when combined with the unconditionally stable implicit time
discretizations. In particular, the governing Hamilton-Jacobi
[15, 18] and Hamilton-Jacobi-Bellman-type equations |1, 9] are
nonlinear, often curvature dependent, and difficult to solve
efficiently, especially in higher dimensions.

Throughout this thesis, we present various methods, all of
which are based on implicit time discretization, motivated by
its unconditional stability. To counterbalance the associated
computational cost, we design efficient spatial discretizations
that, in most cases for linear problems, allow the numerical
solution to be expressed explicitly using precomputed values or
values from the previous time step.

First, we propose an Eulerian numerical scheme in structured
grids to solve the advection-dominated evolution of implicit in-
terfaces, as introduced in |1 1]. This scheme addresses models in
which the interface velocity partially depends on the curvature.
It combines standard upwind finite differences for advection
with non-traditional upwind differences for the curvature term,



enhancing efficiency in upwind-based solvers like the fast sweep-
ing method. A key component is the detailed stability analysis
presented in [10].

The second part focuses on higher-order approximations of
some representative models in the class of the Hamilton-Jacobi
equation. We introduce a new compact, high-resolution finite
difference scheme based on [7| and extended in [12] through a
non-traditional partial inverse Lax-Wendroff procedure. The
scheme achieves higher-order accuracy and unconditional sta-
bility, effectively eliminating non-physical oscillations in the
solution gradient for any Courant number. Its approximation
stencil includes a compact, purely upwind implicit part, enabling
efficiency comparable to first-order schemes and compatibility
with fast upwind-based solvers such as the fast sweeping method.
However, the scheme’s ability to reduce oscillations remains
somewhat Courant number dependent, and its extension to
higher dimensions proves cumbersome.

Lastly, inspired by [0, 13| and motivated by certain draw-
backs of our compact scheme, we propose a new predictor-
corrector-based finite difference method. It achieves up to
third-order accuracy in both space and time for smooth solu-
tions and, when combined with appropriate limiters, effectively
suppresses non-physical oscillations regardless of the Courant
number. Despite its high-order accuracy, the implicit part of
the stencil remains equivalent to that of a first-order scheme,
similarly to our compact scheme, and the approach extends
naturally to higher dimensions.
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Upwind Schemes for Forced Mean
Curvature Flow

We are interested in solving two dimensional forced mean cur-
vature flow in the form:

¢+ a(l —e(k)r)|Vo| =1, (2.1)

with the initial condition ¢(x,t) = ¢°(x), x € R? t € [0,T]
and we suppose the initial position of the interface is given by
a closed curve 0€2~. The boundary conditions are given as:

Gy, 1) =0, v €I, t>0. (2.2)

In our study, the time variable can be viewed as an (artificial)
relaxation time for the purpose of obtaining (or estimating) a
stationary solution to the modified eikonal equation:

a(l —e(r)r)|VT| =1, T(y)=0, ~el. (2.3)

Our aim is to propose an Eulerian type of numerical finite
difference approximation on structured grids for the above-
mentioned advection-dominated level set equations [11] that is
upwind in both the advective and the diffusive term. Moreover,
we use fast sweeping method to solve the resulting system of
equations.

In order to follow the upwind principle in the discretization
and the subsequent use of the fast sweeping method, to effi-
ciently solve equation (2.1), we need to know the direction of
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the characteristics determined by the advection, which in the
case of equation (2.1) is equivalent to the gradient direction.

Therefore, we introduce a deciding parameter 6 defined as
the angle between the iteratively estimated numerical gradient
computed using the standard Rouy-Tourin scheme.

The partial derivatives in the resulting scheme are approxi-
mated using standard and newly developed finite differences,
designed to complement each other and resulting into a fully
upwind stencil, visualized in Figure 2.1.

0 Ovaiyj <> Oyydij A Ouydij @ |Vl
[ Oce i O Omdi A dendij |Vl
Yy
4»
W
<& o0 x
4»

(a) Stencil for —22.5° < 6 < 22.5°  (b) Stencil for 22.5° < § < 67.5°

Figure 2.1: Local stencils for the approximation of the advective
term and the second-order derivatives for different values 6.

We performed multiple experiments aiming to test the
method’s accuracy and efficiency.

We can see in Table 2.1 that the number of fast sweeping
iterations does not increase significantly with mesh refinement.
This is an expected property of upwind schemes.

Furthermore we present results of an experiment inspired
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N | Ly norm FEOC}, | Ly norm  EOC)_ | k#
21 | 0.107520 0.005115 3
41 1 0.032069  1.745 0.00174 1.556 3
81 0.010229 1.649 | 0.000612  1.507 4

Table 2.1: The results (Ly norm, Ls, norm , EOC (experimental
order of convergence), total number of fast sweeping iterations
(k#)), of experiment involving nonuniform curvature, solved as
stationary solution.

by a real-life application [1, 2|, which models the spread of a
forest fire.
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Figure 2.2: Comparison of isocontour shapes for solution with
e =0 and € = 0.1212. There are isocontours of the first arrival
time ¢ € {0,2,4,6,8,10,12,14, 16, 18,20} in the figure (a) and
t € {0,2,4,6,8,10, 12} in the figure (b). The smallest circle in
both figures is the zero isocontour.
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3

Compact High-Resolution Schemes

We present a novel compact high-resolution scheme for some rep-
resentative equation of the family of Hamilton-Jacobi equations
designed to efficiently produce stable, non-oscillatory solutions.
The method relies on a compact stencil that is upwind in its
implicit part, allowing for high accuracy and robustness while
preserving computational efficiency. The development and anal-
ysis of this scheme have been published in [12].

Consider the following advection equation in one-dimensional
space:

atﬁb(xia tn) + u(l'z) ax¢(xzv tn> = Oa ¢<x17 0) = ¢0(Ii)7 (31)

with given boundary conditions ¢(zg, ") = ¢o(t") if vy > 0 and
gb(xN_l,t”) = §Z5N_1(tn) if uy_; <0.

To derive a compact high-resolution finite difference scheme
for equation (3.1), we employ the Lax-Wendroff procedure |5,
8, 19], which systematically incorporates higher-order terms
to improve accuracy and stability. This approach is also used
when developing an unconditionally stable implicit scheme |3,
g].

We obtain a compact implicit numerical scheme of second-
order accuracy which for the linear advection equation can be
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written as follows:

¢?+Mﬂ<¢?—¢%1+

1—-wi

— (G = o = o+ ) (32

wlt _ e n—
+ 71 (¢? b— zill - z:Fl + ¢12F2)) = ¢z 1>

where + = sign(¢;) and F = —sign(¢;). This scheme is
oscillation-free for Courant numbers smaller than 1. To avoid
issues and ensure non-oscillatory behavior for larger Courant
numbers, we propose a new method derived via a non-standard
formulation, the partial inverse Lax-Wendroff procedure. The
general form of the final scheme can be written as follows:

1
07 + el (67 = 0) + 5ol —am)(@7 =97 (33)
1 —

S (O — e — ol ).
+7 ( iFl 2$1 qbn ' + ¢n 2) = ¢?_17

where + = sign(¢;) and F = — sign(c¢;).
We can combine both schemes into one non-oscillatory frame-
work:

61+ 161(60 = éts) + 5l = cimallo o)
sub
+%[wz”<--->+(1—w?)<m>] (3.4)

+%EHFK”)+“_@K”J

where ! and w! are chosen using WENO (Weighted Essen-

sub

tially Non- OSClllatory) approach, ¢ = sign(c¢;) min{|¢|, 1}

and ;""" = ¢; — b

-1
=¢;
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Figure 3.1: Solutions of the linear advection equation with
constant velocity and non-smooth initial condition.
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Figure 3.2: Solutions of the advection equation with variable
velocity and the non-smooth initial condition.

We test the proposed schemes on a series of examples. We
solve a one-dimensional linear advection equation with a given
constant velocity. We test the behavior of numerical schemes in
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the presence of discontinuities in its gradient. The results can
be seen in Figure 3.1. Although the direct scheme gives slightly
more accurate numerical solutions, it clearly has an oscillatory
approximation of its space derivative.

Furthermore, we performed a test of the general non-oscillatory
framework on an example with variable velocity u(z) = cos(x)
and non-smooth initial condition; see Figure 3.2. Clearly, the
novel compact WENO method produced better results with re-
spect to oscillatory behavior in both the low- and high-velocity
regions.

15



4

Local implicit predictor-corrector
method

Efficiency should not be understood narrowly as a low com-
putational cost alone. It must be evaluated in the broader
context of the method’s overall behavior. The core of this chap-
ter focuses on the development of a novel predictor-corrector
scheme that was designed to be locally implicit, higher-order
accurate in both space and time, and easily extendable into
higher dimensions. In addition, when combined with ENO or
WENO, the scheme reduces non-physical oscillations regardless
of the Courant number.

To illustrate the key ideas and practical implementation of
the proposed method, we begin with a simple representative
model problem: one-dimensional linear advection. We propose a
novel method designed to efficiently solve the following problem:

@-Vo=0, V=(8,0,), @a=(1u) (4.1)

with given inflow boundary conditions ¢(x,0) = ¢°(x) and
The novel method that can be summarized in the following
set of steps.

1. We begin by predicting values ¢} =™ g7 (" g () gt M)
using a first-order accurate finite difference scheme. We
adopt the convention that a superscript (p) denotes a
predictor of order p, where p =1, 2.
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2. Next, we compute the predictor ¢;" @ using the second-
order accurate upwind finite difference scheme employing
the previously computed predictors.

n 1 n— 1 n n— n— n—
@7(2):1“‘(% 1_5(@7(1)_% L) gnet g 2)

1 n n n n
+ai < i1~ ) (Cbi’(l) - ¢ii(11) — @i+ @‘—2)) >
(4.2)

3. In addition, we compute the "future" predicted values
¢?jr(12), (b?’“’ @) in both space and time following a similar
strategy.

During the space-time marching process, the values (bﬁ(f)

and (b?“’ @) Wwill be overwritten in subsequent iterations.
To maintain third-order accuracy of the final scheme,
these values must be temporarily stored and, in the next
iteration, reused as previously computed approximations,
that is to say, as the value ¢, ) assessed in the previous

step. We will denote the stored values as gp?jr(f) and

(2
4. Finally, we compute the corrector using the scheme

n(3) 1 -1 1—=03 (ni1.2)  n(2)
Rl G CARE

@ 1) % (n @) n=1,2) _ n—1 gn—2

R R R S G o1+ 0r %)
1 —w n n n n

+Cz‘<¢?_1— 2 : (@-Jr(f)—¢¢’(2)—%’(2)+¢i—2)

- %? (éf)? @ _ ¢?L(12) — i+ ¢?—2> >>

(4.3)
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which is generally second-order accurate and appears to
achieve third-order accuracy when o = w;' = 0, although
this has so far only been observed experimentally.

Furthermore, the parameters o and w]' can be selected
based on smoothness indicators, for example, using an
ENO-type scheme [17].

We perform a test on an example with a non-smooth initial
condition

4(r —0.25), if0.25 <2 <0.5,
¢%(x) = { —4(x —0.75), if 0.5 <z < 0.75, (4.4)

0, otherwise.

and a constant velocity u(x) = 1, with the Courant number
C; = D.

We compare the results of the proposed third-order accu-
rate method (IPC) and a complementing ENO IPC variant; see
Figure 4.1. We observe that the ENO 1PC method success-
fully eliminates non-physical oscillations in the gradient of the
solution.

We also present solutions to one-dimensional linear advection
with variable velocity u(z) = 1 + 3/4 cos(x). The numerical
solutions at the final time 7" = 87/4/7 are shown in Figure
4.2. The ENO IPC method effectively reduces non-physical
oscillations in the gradient, both in regions of low velocity
u(z) (near x = 7) and high velocity (around z = 0), without
requiring additional limiting.

We performed a similar test on a two-dimensional advection
equation with constant velocity v(x,y) = (—1.5,1.5) with equiv-
alent non-smooth initial condition in the shape of a pyramid

¢°(x,y) = max(— max(|z — 1.5, |y + 1.5]) +2,0.0).  (4.5)

18
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4 = IPC solution
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Figure 4.1: Comparison of solution ¢ (up) and 0,¢ (down)
obtained by the first-order accurate method, IPC end ENO 1PC
methods on a non-smooth example (4.4).

e \/

-1 0 1 2 3 4 x Exact solution
= IPC ENO solution

— — Initial Condition

280

— IPC solution
0.5 :3 i;

0

A

-1 1 2 3 4 x

First-order solution

o —

Figure 4.2: Numerical solutions of the advection equation with
variable velocity and the initial condition (??) computed with
the IPC and ENO 1PC methos.

Again, ENO 1PC was able to recover the solution with
no significant non-physical oscillations in the gradient of the
solution; see Figure 4.3.
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Figure 4.3: Visual comparison of IPC and ENO 1PC method
results for the two-dimensional example with non-smooth initial
condition (4.5). The top row shows contour plots of the solu-
tions, while the bottom row displays their respective gradient
profiles along a selected slice.
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