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Abstract

In this dissertation thesis, a meshless metho@das the local Petrov-Galerkin
(MLPG) approach is proposed, to solve static anthdyic problems for smart structures that
consist of magnetoelectroelastic (MEE) materiale Tdtal weak formulation is employed on
circular subdomains. Subdomains surrounding nodespread over the analyzed domain.
The moving least-squares (MLS) method is adoptedHe approximation of the physical

guantities. Mesh of finite elements is thus notdeekfor the analysis.

An enhancement of the magnetoelectric coefficientanalyzed in two-layered
composite consisting of two dissimilar piezoelectand piezomagnetic materials. The
magnetoelectric coefficient is vanishing in purezaielectric as well as in pure piezomagnetic
constituents. It is shown that the electric potdriti the piezoelectric layer is induced by the
magnetic potential in the piezomagnetic layer. Fonally graded material (FGM) properties
are considered too. Many magnetoelectroelastic ocoems are intended to act as an
actuators or sensors, which have plate-like shapjass MLPG method is also proposed for
plate bending analysis with material having funeéily graded magnetoelectroelastic
properties. Axial symmetry of geometry and boundaogditions for a circular plate reduces
the original 3D boundary value problem into a 2Blgdem in cross section of the plate. Large
deflection of square plate is also analyzed. Th& Warman plate theory of large
deformations is applied to express the strains.dBgn moments and shear forces are
considered by the Reissner—Mindlin theory, and dhiginal three-dimensional (3D) thick
plate problem is reduced to a two-dimensional (8Dg. The dissertation thesis also discusses
the crack analysis with a central crack on an fater between elastic and
magnetoelectroelastic solids. The crack openinglaliements, electric potential and intensity
factors are investigated. The intensity factors emenputed from the generalized crack-

opening-displacements.

Numerical results presented in this thesis hawawvehexcellent properties of the
meshless MLPG method for the analysis of engingestructures with MEE material

properties.

Keywords: Meshless local Petrov-Galerkin method (MLPG); mgvieast-squares
approximation (MLS); magnetoelectric effect; magmedtktroelastic material; functionally

graded material; von Karman plate theory; intenfittors



Abstrakt

V tejto dizerténej praci je pre rieSenie statickych a dynamickytdh inteligentnych
konStrukcii pozostavajuce s magnetoelektroelastickymaterialov (MEE) uvaZovana
bezprvkovd metéda zaloZzena na lokalnom Petrov-@atmrom pristupe (MLPG). Slaba
lok&lna forma riadiachich rovnic je pouZzita na nshlkruhovych oblastiach. Tieto podoblasti
obklopujuce vypoétové body su rozmiestnené po analyzovanej obl&st. aproximaciu
neznamych vetin je pouzita metdéda pohyblivych najmensich Stverd@ouzitie koneénych

prvkov nie je teda vobec potrebné.

V préci je skimané zlepSenie magnetoelektrickébefikientu v dvojvrstvovom
kompozite pozostavajuicom z piezoelektrického a qegnetického materialu.
Elektromagneticky koeficient je nulovy v obidvoclatarialoch, ale je ukazane, ze elektricky
potencial je indukovany v piezoelektrickej vrstvegirednictvom magnetického potencialu
aplikovaného v piezomagnetickej vrstve. TaktiezusaZzované aj funkcionalne gradované
materidlové parametre. MnoZstvo magnetoelektrdelgsth materidlov sa pouziva ako
senzory alebo aktuéatory, ktoré majasto tvar kruhovych dosiek. Preto je MLPG metdda
uvazovana pre analyzu ohybu MEE dosiek. Materidlpagametre su uvazované ako
funkcionalne gradované. Z ddvodu osovej] symetriepgst&ujuce pre kruhové dosky
analyzovd len prierez doskyim sa 3D uloha redukuje na 2D. Rké priehyby Stvorcovych
dosiek su tiez vySetrované. Pre vyjadrenie pomérmgformacii je pouzita Von Karmanova
tedria dosiek vikych deformécii. Pre ohybové momenty a Smykové glyuvazovana
Reissner-Mindlinova tedriatim sa 3D problém tenkych dosiek redukuje na 2D ulleh
prierezovej rovine dosky. Dizettad praca sa tiez venuje centrdlnej trhline na wozhr
magnetoelektroelastickej a elastickej vrstvy. Vg®einé su otvorenia trhliny, elektrické a

magnetické potencialy a intenzitné koeficienty ré&teu pditané z hodnot otvorenia trhliny.

Numerické vysledky predstavené v tejto dizém& praci ukazuju vyhody pouzitia
bezprvkovej MLPG metddy pre rieSenie inZinierskyadnstrukcii s MEE materidlovymi

vlastnogami.

Keywords: bezprvkova lokalna Petrov-Galerkinova (MLPG) metoneetoda pohyblivych
najmensich Stvorcov (MLS); magnetoelektricky efekiagnetoelektroelasticky material;

funkcionalne gradientné materidly; von Karmanovaitedosiek; intenzitné koeficienty
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Introduction
Analysis of smart structures is currently in theme of many engineers and researchers. The
solution and complex engineering design problemsntdrt materials embedded in intelligent
structures requires having an advanced computdtito@ in order to obtain results
effectively and with required accuracy. It is nea@y to develop advanced computational

methods and modelling approaches taking into adcspetific properties of smart materials.

A wide range of engineering applications of smasdtermials have been found recently.
Improvements of the performance of engineeringcsiines lead also to developments and
applications of new structural materials. Smartenals are new class of multifunctional
materials that have one or more properties thatbsawcontrolled or changed by action of
external effects in predetermined way, so theyaaatnergy transducers and can be applied as
sensors and actuators. Special categories of snaerials are piezoelectric, electrostrictive
and magnetostrictive materials. They have the dbfyalto serve as both sensors and
actuators. By putting together piezoelectric andymetostrictive materials, we are able to
create a new product, magnetoelectroelastic (ME&Egnal. In MEE materials, the magneto-
electric forces give raise to strains that can cedihe effects of the applied mechanical load.

That is why MEE materials are solely investigatethie thesis.

Up to date multilayered composites are mostly aealy Therefore, it could be interesting to
investigate also composites, where the volumeitmaaif constituents is continuously varying
in a predominant direction. This type of properycalled as functionally graded property.
The thesis keeps focusing on developing advancedencal method for anisotropic

functional graded magnetoelectroelastic (MEE) sokd well as layered composites. The
solution of general boundary value problems forhskind of solids requires advanced

numerical methods due to the high mathematical ¢exity.

In recent years, meshless formulations are becomapylar due to their high adaptability

and low costs to prepare input and output dataimerical analyses. The term “meshless” or
“meshfree” stems from the ability of an approxiroatior interpolation scheme to be
constructed entirely from a set of nodes withow treed to connect them into elements.
Meshless methods for solving partial differentigations (PDE) in physics and engineering
sciences are a powerful new alternative to theittomél mesh-based techniques as finite
element method (FEM) or boundary element methodMBHE-ocusing only on nodes or

points instead of elements, gives certain advastimeeshless approaches.
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1. Outline and main contribution of the thesis

The aims of the thesis are:

* to provide a brief introduction to application chnous smart materials applied in
smart structures

* to focus on more detail description of magnetoetetastic materials

* to introduce meshless solution approach for thentary value problems

* to describe in detail the MLPG method, specifiaatad local integral equations and
moving least squares (MLS) approximation technique

» to derive local integral equations for magnetoetestastic solid

» to extend the formulation for layered composite

 to analyze the enhancement of the magnetoelecwigfficient in layered or
funcionally graded multiferroics

» to derive local integral equations for axisymmetiicular plates made of funcionally
graded MEE material

» to derive local integral equations for nonlinearg&a deflection of rectangular MEE
thick plates under a large deformation describethbyReissner— Mindlin theory

* to present state-of-the-art in the field of crankyaes in MEE material

* to analyze interface crack between MEE and elésjirs

2. Magnetoelectroelastic (MEE) material

In the magnetoelectroelastic materials, we canrebsa magnetoelectric (ME) effect. The
ME effect was discovered in 1894 by Curie. It idimkd as the ratio between the magnetic
(electrical) field output over the electrical (magio) input. The coupling can be provided by
materials in single phase or as composites. Thglesiphases materials are represented by
multiferroic  magnetoelectric materials, in which thboferromagnetic and ferroelectric
components are in the same phase, as well as neadlyedrdered ferroelectric materials [1].
There are very few 'multiferroic’ materials in matwr ones that have been synthesized in the
laboratory that exhibit a stable and switchablehlmectrical polarization and magnetization
[2]. From earlier investigations it is well knowhat some composite materials can provide
superior properties compared to their virgin mahati constituent materials. The ME
composites have large magnitudes of the ME volteggfficient. They are created from

individual piezomagnetic and piezoelectric phases irgividual magnetostrictive and
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piezoelectric phases [3]. In MEE material, the Mte@ is a product of piezomagnetism or
magnetostriction, in which a mechanical deformatisncaused by a magnetic field, and
piezoelectricity, in which an electric potentialilgluced by the mechanical deformation [4].
In turn, an applied electric field induces a magration via the mechanical coupling between
the constituents. In contrast to the intrinsic Mie& of single phase crystalline samples the

composite ME effect manifests predominantly as ineak in the applied fields.

Because of the complex nature of the ME interachetween the constituents the relation
between the applied magnetic field and the voltigeiced in the detection circuit is not
simply linear as in the case of single-phase comgsuDue to the hysteretic nature of the
ME effect, the composites may find applicationsnemory devices. The linear ME effect has
a positive or a negative sign, depending on theealig conditions (parallel or antiparallel
magnetic and electric fields). In binary data sjeralevices the ME material can thus store
information in two different states distinguishey the sign of the ME response. Such a
memory will be an effective ‘read only’ memory, snthe reading can be done at very high
frequencies. Data writing is more difficult becausenvolves temperature annealing in
magnetic and electric fields or the use of veryhhigriting fields [3]. Further applications
include magnetic field sensors and magneticallytrotied optoelectronic devices. The
transduction properties of the ME effect can alsoemployed in ME recording heads and
electromagnetic pick-ups [5]. Historical perspeetivstatus and future of multiferroic

magnetoelectric composites are given in a reviepepgo].

Constitutive equations of the coupling of the mexbta, electrical and magnetic fields in

magnetoelectroelastic solids [4] are given as

0 (X, 7) = € (X)& (X, T) = & (X)E, (x,7)—dy; X)H, (x,7) (2.1)

D,(x,7) =€), (X)&, (X,T)+h, (X)E, (X, 7)+a, (X)H, (X,T) (2.2)

Bi(X,7) =d (X)& (X,7) +a (X)E (X,T)+y;, (x)H, (x,T) (2.3)
whereg;,D,,B; represent the stress tensor, the electridadisments, and the magnetic
inductions, respectively. Material parameters dre elastic coefficients,, , dielectric
permittivitiesh, and magnetic permeabilitigg . The &o&nts for the piezoelectric,
piezomagnetic, and magnetoelectric coupling areotenh bye, , d; and a;,
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respectively. Symbolr is used for timeThe strain tensar; , electric field vecté, and

magnetic intensity vectoH, are expressed througbpaddent variables - displacemernts

, electrical potentialy and magnetic potentjal

Governing equations for magnetoelectroelastic baager dynamic loading conditions are

given by the balance of momentum and the scalamidiis equations as

g, (X, T)+ X, (x,7) = pui (X,7) (2.4)
D, ,(x,7)-N(x,7)=0 (2.5)
B,;(x,1)=0 (2.6)

wheret,, p, X, and 1 represent the acceleration of the displangrtiee mass density, the

body force vector and the volume density of frearghs, respectively. In case of static

loading conditions, right-hand side of equatiod)2s equal zero.

3. Meshless MLPG method

In many cases there is a need to solve complex egimad domains, and quite often,
nonlinear problems of engineering processes. Bxathematical solutions are available for
the simplest geometrical domains and mostly fazdmproblems. Computer based modelling
and simulation techniques were introduced in palrallith development of computer
technology. There is a great deal of commonalityhim differential equations governing the
engineering process and so we are able to make oansomputational tools for computer

modelling and simulation.

The finite element method (FEM) is well establishetd often used for the solution of
general boundary value problems. The FEM in genecaild suffer from drawbacks such as
locking in bending, demanding complicated mesh emeshing in problems of large
deformations and Tcontinuity of approximated fields in analyses ahdtionally graded
material, which means that secondary fields suchkt@sses lack the continuity across the
element interfaces. Another well established mettiothe FEM is the boundary element
method (BEM), which is effective and convenient muical tool. Unfortunately, the
drawback of BEM is that the fundamental solutiomet available for functionally graded
magnetoelectroelastic solids.



Meshless methods are alternative computationahtquks. Several meshless methods can be
derived either from a weak-form formulation on tgebal domain or a set of local
subdomains. In the global formulation, backgroueliscare required for the integration of the
weak-form. In the methods based on the local weak-formulation no background cells are
required and therefore they are often referredsttoidy meshless methods. Meshless method
used in this thesis is the meshless local Petrderda (MLPG) method. This local
formulation is using nodal points, which are spreadhe analyzed domain and each of them

is surrounded by a small local subdom@ipas shown in Figure 3.1. This kind of method has

advantages in higher adaptivity and lower costrappring input data for numerical analysis.
It has attracted much attention due to their flgiyh and most importantly due to their ability
in omitting the need for the human-labour intengivecess of constructing geometric meshes
[7]. Nodes can be simply added or deleted in dégmasition. The methods use also a local
approximation to represent the trial function usihg undetermined values (or the fictitious
values) of the field variable at some randomly tedanodes [8]. The moving least-squares
(MLS) approximation is generally considered to e @f the best schemes to interpolate
discrete data with excellent accuracy. The conynuof MLS approximation for
approximation of unknown fields is given by the mom between the continuity of the basis
functions and that of the weight function [9]. Smntinuity can be tuned to a desired degree.
In conventional discretization methods there igsgahtinuity of secondary fields (gradients
of primary fields) on the interface of elements.r Fmodelling of continuously
nonhomogeneous solids the approach based on pgeamtinuous elements can bring some
inaccuracies. Therefore, modelling based dnc6ntinuity, like in meshless methods, is
expected to be more accurate than conventionaldtization techniques. The MLPG method
is a fundamental base for the derivation of manghtess formulations, since trial and test
functions can be chosen from different functiorzdees. Previous results showed excellent
convergence and accuracy of meshless approachbsdafgpmany engineering problems of
classical elasticity [7] [10] [11]. Recently, thellHG method with a Heaviside step function
as the test functions functions [7] [11] [12] [13&s been applied to solve two-dimensional

(2D) homogeneous piezoelectric [14] and magnettrelelastic problems [15].



local boundary 0Q,=2Q =L

e T
//:\‘ ~— \ ~ subdomain Q=0
y _ o e —

&)( ;;
node X' \/

support nt node X

Figure 3.1 Local boundaries for weak formulat@g®_, the domainQ, for MLS

approximation of the trial function and the suppea of weight function around nosle

The MLPG method based on the local weak form ofgbeerning equations (2.4)-(2.6) of
MEE material is written over local subdomain. The local weak forms are then the starting
point for deriving local integral equations withetluse of Gauss divergence theorem and
appropriate test function, in this case Heavisidét step function. This finally yields

following local integral equations

j t.(x, 7)dl + J"I'i(x,r)dr + j X, (x,7)dQ - j P (X,7)dQ =0 3.1)
L+l g, My Qg Qg

j q(x, 7)dr - j Q(x,r)dr—jn(x,r)dQ:o (32)

j s(x,7)dr - j S(x,7)dr =0. (3.3)

L+

where Q_ is the local subdomainL_ denotes the local boundary that is totally indide
global domain.r ., r_ andrg are the parts of the local boundary which coincid the
global traction vectorT,, normal component of the electric displacementtore€ and

normal component of the magnetic induction vec®iboundaries, respectively. Similarly,

r,, r, and r_ are the parts of the local boundary that coincideth the global

displacement, electric potential and magnetic ga@kboundaries, respectively.

According to the MLS method, the approximation nkmowns can be given as



u" (x,r)ziﬁ(x)ﬁa(r) Ut (x,r):zn:qﬂj (x)02(7) (3.4)

a=1
where the nodal valued®(r) are fictitious parameters for unknowns at timeand ¢?(x) is
the shape function associated with the nadeCollecting the discretized local integral

eqguations together with the discretized boundangitimns, one obtains a complete system of

ordinary differential equations (ODE) which candmdved by the Houbolt method.

4. Enhancement of the magneto-electroelastic coefficie
A strong ME effect has been recently observed bydra Wang [16] in artificially fabricated
multiferroic composites. Thus, the 2D layered (Fggwt.la) and FGM (Figure 4.1b)
composites with a pure piezomagnetic behaviour tn biottom surface and a pure

piezoelectric one on its top surface are investigiat

PE

a) b)

Figure 4.1 Geometry of: a) two-layered multiferroamposite; b) FGM multiferroic

D,=0 p=0 B,=0
D,=0| E.,=unknown D,=0 w=0 E,=unknown D,=0
=0
N
B e —— _
B,=0 Q &Ha& & B,=0 h=0 é:>— H=-aA,
D,=0  p=-h,H,
a) b)

Figure 4.2 The longitudinal ME effect: a) out-ofpek; b) in-plane

In case of layered composite, it is needed to siteyumps in the secondary field. Two sets
of collocation nodes are assigned on both the +amikethe —side of the material interface at
the same location, but with different material prdj@s. The MLS approximations are carried

out separately on particular sets of nodes withaicheof the homogeneous domains.
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Therefore, the high order continuity is kept witleach homogeneous part, but notoss

their interface.

gy in-plane: MLPG
x FEM
= =@ = out-of-plane: MLPG

-3 FEM

Llectric potentlal y [V]

0 1 2 3 4 5 6
exponent »n

Figure 4.3Variation of the electric potenti. Figure 4.4 Variation othe magnetoelectri
along x, on the top surface of PE lay coefficient versus the volumetric ra

In the numerical exampledottom of the piezomagnetic layer is fixcu, =0. Magnetic
potential #=-0.1A is alsoapplied on the bottom surface of the Hayer In the layered

composite, lte volumetric ratio of the PE layer is introducecv, =h_/(h, +h_), where the

piezoelectric layerlf,) is change and the piezomagnetic layeh () is unchange. One can

observe the influence of the volumetric ratio af E/PM layers on the electric potential
the top surface of the PE layerFigure 4.3 With increasing PE layer thickness the elec
potential on the top surface reases. In case of the FGM multiferraitaterial properties ai
continuously varying along t plate thickness using polynomial distribui. Both out-of-
plane (@,;) and in-plane(a,,) magnetoelectric coefficientsre presented iFigure 4.4. One
can observe that the maximum ME coefficient valae obtained forexponent value of

about 0.5. The iplane ME coefficien (a,,) is significantly larger than the c-of-plane ME
coefficient (@,,) . Recently, Pan and Wai[16] observed a similar phenomenon for laye

multiferroic composites, where the-plane ME coefficient was about 2 times larger ttae
out-of-plane oneln considered FGM multiferroic composites, one saa@ more enhancec-

plane ME coefficient.
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5. Circular MEE plates with FGM properties
Many piezoelectric and magnetoelectroelastic corapts have plate-like shapes, often
circular. Some of these components like resonaars filters are used for the purpose of
frequency control. Therefore, the MLPG method igliggl for circular plate bending analyses
assuming also functionally graded magnetoelectstielamaterial properties. Using the

cylindrical coordinatesc =[r,8,z], 3D axisymmetric body is reduced to a 2D probleitinw

unknowns on the cross-sectional domain as shovwiigure 5.1. Therefore, nodal points are

introduced and spread on the analyzed 2D domain.

3=z

=
Figure 5.1Geometry and generation of a circular plate

In the cylindrical coordinate system, the governaggations (2.4)-(2.6) take the form
g, (r, z,r)+am(r,z,r)+%[arr ((.27)=0, € .27)]=-p &), ¢ 27 )=-X, ¢ 27 ) (5.1a)
o,.(r,z,r)+o,, (r,z,r)+%arZ r.zr)-p&l,t,zr)=-X,¢z1) (5.1b)
1
D,,(r,z,r)+D,,(r,z,r)+=D, (r,z,r)=0 (5.2)
' ' r

B”(r,z,r)+BZZ(r,z,r)+EBr (r,z,r)=0. (5.3)
' ‘ r
Then, local boundary-domain integral equations)(@13) are converted into

j O, (r,z,7)n,dl + I%(arr _J¢¢)dQ_ j P, (r,z,7)dQ = _.[ X (2,0 (5.4a)
20, Q, Qs s

j o,(r,z,r)ndl + I%arz(r,z,r)dQ—jp(x)]Z (r,z,r)dQ:—j X, .zrY0Q (5.4b)

J'Db(r,z,r)nodl'+J-}Dr (r,z,r)dQ=0 (5.5)
00 Q r
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j B,(r,z,7)ndl + '[%Br (r,z,r)}dQ=0 (5.6)

In the numerical exampl#je plate is loadeby stationary mechanical tension on the top g
surface. An exponential variation cmaterial coefficients is assumeathere twocexponential

coefficients y=6.931% and 4.054 are considereFor the fist exponential coefficient tt

material parameters on the top surface of the @etedoubled with respect to those on
bottom plate surfacelhe numerical results of variations of the defleas for the clampe
plate with radial coordinate are givin Figure 5.2.The numerical results are compared v
their homogeneous counterp Since the mechanical parameters for the FGM platdaager
than thosen a homogeneous case, the mechanical deflectiedigced for tt FGM plate. A
larger reduction is observed for a larger gradaparamete The variation ofthe induced
electrical potential on the top surface of the @laith the radial coordinate is presentec
Figure 5.3. The value of thelectric potential is almost uniform over the large parttiod

radius from the plate centre for the homogeneowse.chlowever, for the FGM plate t
electrical potential is gradually growing with réaty the maximum value at the plate cen
One can okerve that the electrical potential in the FGM @list significantly larger than in

homogeneous plate. Titwfore, FGM magnetoelectroelastic plates anere convenient fc
sensing of deformations than homogeneous

0.14

012 —4— liomog.- MLPG

= =Om = FGM: gama=6.93

0,1 - gama=4.05

0.08 (t

0,06

Central deflection*10%

0,04 4

. \
-0.2 4 —— homog - MLPG \h

0.02 | = 0= = FGM: gama=6.93 “\\

Electric potential *102

—_——- gama=4.05 N

0 0,2 0,4 0,6 0,8 1

Radial coordinate 0 0.2 0.4 0.6 0.8 1

Radial coordinate

Figure 5.2 Variation ofdeflection: with the Figure 5.3Variation of el. potentials on tt
radial coordinate for clampe top surface with the radial ordinate for
magnetoelectroelastic plates clamped magnetoelectroelastic pl:

6. Large deflections of rectangularMEE plates

A plate of total thicknest with homogeneous MEE material propertand with its mean

surface occupying the domaQ in the plane £,x,) is consideredThe axisx, =z is
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perpendicular to the mid-plane ( Figure 6.1) areldhgin is located at the bottom of the
plate.

Figure 6.1 Sign convention of bending momentsfances for a plate

The MLPG method is proposed to solve problems Fockt MEE plates under a large
deformation described by the Reissner— Mindlin thedhe electric and magnetic field
components are assumed to be zero in the in-pla@etidns of the plate. A quadratic power-
expansion of the electric and magnetic potentialshe thickness direction of the plate is
considered. The bending moment, normal and shea&e fexpressions are obtained by
integration through the plate for the consideredstitutive equations. The Reissner—Mindlin
governing equations of motion are subsequentlyesblior a time-harmonic plate bending
problem. The Reissner— Mindlin theory reduces thgiral 3D thick plate problem to a 2D
problem. In the used meshless method, nodal pametsandomly distributed over the neutral

plane of the considered plate.

Time-harmonic load is a special case of the gendyabhmic analysis. Time variation of
physical fields is given by the frequency of ostibbn w. Then the governing equations for
the amplitudes have the following form [17][18]:

M .5 (X, ) = Q4 (X, ) = =1, &PW, (X, ) (6.1)
Qo (% @)+ (T (X, Wy s (%, @) |+, @) = =1 g W, (X,0) 6.2)
T (% @)+, (X, 0) = —lo@U,, (X,w), xOQ (6.3)

and the additional set of two governing equatiengven by Maxwell equations as
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()[/Z(X’w) _ 20, ﬂZ(X’w) - O

%1W1,1(X’ w) + esé’vz,p(’ w)—2h S h2 (6.4)
X, T X, T
d31W1,1(X: w) + d32W2,2(X’w) —2 33w2£]2 ) -2 33ﬂ2£]2 ) = (6.5)

where M, , Q,, T,, are the bending moments, the linear part of tlearsforce and normal
forces, respectively, with indicesf=1,2. w, andw, are rotation around, -axis and out-of-
plane deflection, respectively. A transversal loaddenoted byq(x,7), and q,(x,7)

represents the in-plane load. If the mass dersitpmstant throughout the plate thickness, one

can obtain
_ph
Iy = TR lo =ph.

Applying the Gauss divergence theorem to the gongrequations (6.1)-(6.3) in the local
weak-form and choosing the unit step functionghertest functions in each subdomain, then,
the local weak-forms are transformed into the fwitgy local integral equations (LIES)

j M, (x, w)dl - j Q' (x,w)dQ + j l, W, (X,w)dQ = 0

a0,

j Q. (x, c)n, (x)dr + J | &P (X, c)dQ + j T, (X, W, ; (x, )l + J Ax@HQ=0 (52

30, X 30,

(6.6)

S S

S

_[Ta(x,w)dr+jqa(x,w)dQ+_[ | @PU,o (X, @)dQ = 0

0Q s

(6.8)

s

where 9Q, is the boundary of the local subdomaim ,(x,w)=M,,(x,w)n,(x) and
T,(x,w) =T, (x,w)n, (x) are the normal bending moment and the tractiontovec
respectively.n, stands for the unit outward normal vector to thermaryaQ .

In order to linearize the problem, the nonlineamte will be considered in the local integral
equations (LIE) iteratively. It means that nonlineerms computed in thi-1)th iteration are
considered in the LIE fokth iteration. Insertion of the MLS-discretized mametractions
and shear force fields into the local integral ¢mqurs (6.6) - (6.8) yields the discretized local
integral equations. If the MEE plate is used asresar, the plate is under a mechanical load.
Then, the system of the discretized LIE has toupplemented by Eqgs. (6.4)-(6.5). In tkib
iteration step the linearized boundary value pnwbie resolved. The iteration process is
stopped if the differences between the deflectiansvo consecutive steps are less than the

prescribed tolerance.
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In the numerical examples, a square MEE plate wilide-lengtha =0.254nis analyzed to
verify the proposed computational method. The tibtiakness of the plate is=0.012m. On
the top surface a uniform mechanical load is appl&mply supported boundary conditions

are considered.

—%— FEM: linear h/a=0.047 K
== == MLPG: linear h/a=0.047 Pid
0.8 4 | ==0== MLPG: nonlin. Wa=0.047 ,/ ?-?'*Q..,_
ey MLPG: nonlin. h/a=0.0945 -+ 9."

P 4 L7

¥  linear: FEM

=«O== lincar: MLPG

—ir— nonlinear: MLPG

qa*/cy xyla

Figure 6.2 Variation of the plate deflection digure 6.3 Variation of the electric potential
the centre of a simply supported plate along thex -coordinate

The variation of the central plate deflectioq € x, = 0) with the intensity load is presented
in Figure 6.2. The intensity load is given by a diomensional parametey = ga*/c ;h*. Two
different plate thicknesses are considered here.plate deflectionn, is normalized by the
plate thickness. It can be seen that the platekrbigs has only a slight influence on the
normalized deflections. Variations of the electpotential along thex -coordinate are
presented in Figure 6.3 at the nondimensional sittehoad G =9.42. At this load intensity

one can see clearly that nonlinear effect is appaFairthermore the difference of the induced
electrical potentials based on the linear and neali theory is more than 20%. The maximum
electric potential for the simply supported plaseréached at the centre of the plate. The

magnetic potential at the plate centre is propodioto the electric potential with

@/ 1 =0.61010% and this value corresponds to the material parmseatiod, h,,/e, ) ...

7. Cracks in MEE solids
The MEE materials can be used as sensors and arstdar active vibration control of

various elastic structures. In this kind of thaistures, an interface is formed between elastic
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and magnetoelectroelastic material. The materiagcaditinuity in laminated composite
materials leads to large interlaminar stressestla@gossibility of initiation and propagation
of cracks. For this reason, a crack analysis ahterface between two dissimilar materials is

important.

The meshless local Petrov-Galerkin (MLPG) methodgplied to solve the boundary value
problem by same way as in case of two layered csitgg;n Chapter 4. The intensity factors
can be computed as an interface crack between tagindlar anisotropic and linear

magnetoelectroelastic materials by the generalizadk-opening displacements (CODs) [19]

as

Au(r)=(H +H)\/I K N K ow oo KWy
2m| (1+ 3¢ )coshte, ) (& @, )cosh€, ) &2 )cosk, )’ °

(7.1)
where K =K, +iK, is the complex stress intensity factdf,, is the electric displacement
intensity factor andK, is the magnetic induction intensity factor, an nt»& denotes the

complex conjugate and  is the distance from theketip to measured data point. The
complex Hermitian matrixH is determined by the mateproperties from the both layers

and computed from the eigenvalue problem as welbtmaterial constants and &, and the

eigenvectorsw w, and, are determined by the eigenvalue problem as sho\i®].

In numerical examples, a finite strip with the eahinterface crack is considered. The crack
with length 2a=1m along the axisx, the width of the stripw=2a/0.4 and height of each
layer h =h, =1.2w is assumed. The strip is under static mechantz &, =10°Pa on the
top of MEE layer. The results for the crack-displ@aents, which are computed on both
crack-faces are presented in Figure 7.1. Largetkenpening-displacement on the lower
crack-face due to smaller material stiffness patarsds clearly indicated. The variations of
the electrical and magnetic potentials along tlaelcfaces are given in Figure 7.3 only for
upper crack face, which corresponds to MEE matehiéénsity factors are computed from
general crack opening displacements. The valudgre$sintensity factok, =1.911¢ Pam"?

is significantly larger in comparison witk, =1.4016Pam”? [20] that corresponds to the strip

of same geometry but homogenous MEE material ptigigan entire solid.
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Figure 7.1 The crack displacement unc Figure 7.2 The electrical and magnei
mechanical loading potentials on the crack face of MEE lay
under mechanical load

8. CONCLUDING REMARKS

The meshless local Petr@alerkin method (MLPG) method is a numerical metkddch

offers easypreparation of input data, becauseelementmesh data are requit and provides
with more flexibility, becausit allows straightforwardmplementation of problems describ
by PDE with variable coefficientscompared to classical computational metl. The

proposed method is a truly meshless method, whaduaires neither domainements nor
background cells in either the interpolation orititegration. In all mentioned analyses, nc
points are distributed over the investigated dosaio finite elements are required. Ei
node is the center of a circle surrounding thisendherefore the analyzed domain is divic
into small overlapping circular subdomains. The k-form on small subdomains with

Heaviside step function as the test functions giag to derive local integral equations. Af
performing the spatial MLS appximation, a system of ordinary differential equagofor
certain nodal unknowns is obtained in case of temsanalysis. Then, the system of

ordinary differential equations of the second ona=ulting from the equations of motion
solved by theHoubolt finite-difference scheme as a timgepping method. The prese
computational method based on local integral eqoatwith a meshless approximation se:
to be very promising for presented coupled fieldlgses. Majority of numerical results ¢

compared with the results obtained by the Fwith good agreement.

The applications of magnetoelectroelastic materigls smart structures have cert

advantages in comparisoim piezoelectric materials. Less material could bedusa
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producing the strains of same magnitude. In thep@hnal, two-layered composite consisting
of two dissimilar piezoelectric (PE) and piezomag{PM) materials with thickneds. and

hn, respectively, is investigated by MLPG method. Mie voltage coefficient increases with
increasing thickness ratib./he, between the magnetostrictive and the piezoetetdyers
because the compressive stress is higher in thipreaoelectric layer. Magnetoelectric
coefficients for functionally graded material paetsers in entire composite plate are also
investigated. The parameters are continuously mgryalong the plate thickness using
polynomial distribution. The magnetic intensity mechanical load causes deformations in
the piezomagnetic constituent of the FGM compositee composite plate deformations
induce electric potential at the piezoelectric ¢bnent of the FGM composite. At an optimal
gradation of the piezoelectric or piezomagneticstiturents one can obtain a significant
enhancement of the magnetoelectric coefficient. Thplane coefficient is significantly
larger than the out-plane one. Understanding ofFtB& plate gives a chance to design smart

structures with an optimal magnetoelectric coeéfiti

In the Chapter 5, the MLPG is applied to a circydate with functionally graded magneto-
electro-elastic material properties. Due to axighsetry it is sufficient to analyze only the
cross section of the plate. Numerical results famped plates showed that induced electrical
potential is significantly enhanced in FGM platékerefore, FGM plates are convenient for
sensing mechanical deformations. Further researchptimize FG material properties is

needed, to get a strong electrical signal from sM&E structures.

The MLPG method is proposed for nonlinear largdedtibns of MEE plates under

mechanical and electrical loads in Chapter 6. Vamnkan’s theory of large deflections is
applied for Reissner—Mindlin plates with MEE prdpes. If a quadratic variation of the

electric and magnetic potentials along the platektiess is assumed, the original 3D thick
plate problem is reduced to a 2D problem. Nodahgoare randomly distributed over the
mean plane of the considered plate. Numerical tessihowed that coupling material
parameters have a vanishing influence on the plefiection under a pure mechanical load.
Also their influence on the eigen-frequencies isisiaing. Induced electric and magnetic
potentials are lower based on the nonlinear lagjerthation theory than those in the

corresponding linear case; however, their spatightions in both cases are similar.

Interesting subject of a study are crack proble@isapter 7 analyzes composite strip that

consists of magnetoelectroelastic layer on theatag elastic layer on the bottom. A central
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crack is considered on the interface. MEE layethentop is intended to act as an actuator and
elastic layer on the bottom is clamped. On thelcface of elastic layer, large crack opening
displacement is observed only under mechanical [0had stress intensity factor is significant

larger than one in MEE materials considering th@edomain.

Numerical results presented in this thesis havavshonique properties of the meshless
MLPG method for the analysis of engineering strreguwith MEE material properties.
Focusing on nodes instead of finite elements boagain advantages, especially in the
analysis of FGMs. Developed numerical solutions aminputational procedures may
contribute to broader application of MEE materetsl also facilitate the analysis of complex

engineering problems.
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