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Abstract 

 In this dissertation thesis, a meshless method based on the local Petrov-Galerkin 

(MLPG) approach is proposed, to solve static and dynamic problems for smart structures that 

consist of magnetoelectroelastic (MEE) material. The local weak formulation is employed on 

circular subdomains. Subdomains surrounding nodes are spread over the analyzed domain. 

The moving least-squares (MLS) method is adopted for the approximation of the physical 

quantities. Mesh of finite elements is thus not needed for the analysis. 

 An enhancement of the magnetoelectric coefficient is analyzed in two-layered 

composite consisting of two dissimilar piezoelectric and piezomagnetic materials. The 

magnetoelectric coefficient is vanishing in pure piezoelectric as well as in pure piezomagnetic 

constituents. It is shown that the electric potential in the piezoelectric layer is induced by the 

magnetic potential in the piezomagnetic layer. Functionally graded material (FGM) properties 

are considered too. Many magnetoelectroelastic components are intended to act as an 

actuators or sensors, which have plate-like shapes. Thus MLPG method is also proposed for 

plate bending analysis with material having functionally graded magnetoelectroelastic 

properties. Axial symmetry of geometry and boundary conditions for a circular plate reduces 

the original 3D boundary value problem into a 2D problem in cross section of the plate. Large 

deflection of square plate is also analyzed. The von Karman plate theory of large 

deformations is applied to express the strains. Bending moments and shear forces are 

considered by the Reissner–Mindlin theory, and the original three-dimensional (3D) thick 

plate problem is reduced to a two-dimensional (2D) one. The dissertation thesis also discusses 

the crack analysis with a central crack on an interface between elastic and 

magnetoelectroelastic solids. The crack opening displacements, electric potential and intensity 

factors are investigated. The intensity factors are computed from the generalized crack-

opening-displacements.  

 Numerical results presented in this thesis have shown excellent properties of the 

meshless MLPG method for the analysis of engineering structures with MEE material 

properties. 

Keywords: Meshless local Petrov-Galerkin method (MLPG); moving least-squares 

approximation (MLS); magnetoelectric effect; magnetoelektroelastic material; functionally 

graded material; von Karman plate theory; intensity factors 
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Abstrakt 

 V tejto dizertačnej práci je pre riešenie statických a dynamických úloh inteligentných 

konštrukcií pozostávajúce s magnetoelektroelastických materiálov (MEE) uvažovaná 

bezprvková metóda založená na lokálnom Petrov-Galerkinovom prístupe (MLPG). Slabá 

lokálna forma riadiachich rovníc je použitá na malých kruhových oblastiach. Tieto podoblasti 

obklopujúce výpočtové body sú rozmiestnené po analyzovanej oblasti. Pre aproximáciu 

neznámych veličín je použitá metóda pohyblivých najmenších štvorcov. Použitie konečných 

prvkov nie je teda vôbec potrebné. 

 V práci je skúmané zlepšenie magnetoelektrického koeficientu v dvojvrstvovom 

kompozite pozostávajúcom z piezoelektrického a piezomagnetického materiálu. 

Elektromagnetický koeficient je nulový v obidvoch materiáloch, ale je ukázané, že elektrický 

potenciál je indukovaný v piezoelektrickej vrstve prostredníctvom magnetického potenciálu 

aplikovaného v piezomagnetickej vrstve. Taktiež sú uvažované aj funkcionálne gradované 

materiálové parametre. Množstvo magnetoelektroelastických materiálov sa používa ako 

senzory alebo aktuátory, ktoré majú  často tvar kruhových dosiek. Preto je MLPG metóda 

uvažovaná pre analýzu ohybu MEE dosiek. Materiálové parametre sú uvažované ako 

funkcionálne gradované. Z dôvodu osovej symetrie je postačujúce  pre kruhové dosky 

analyzovať len prierez dosky, čim sa 3D úloha redukuje na 2D. Veľké priehyby štvorcových 

dosiek sú tiež vyšetrované. Pre vyjadrenie pomerných deformácii je použitá Von Karmanova 

teória dosiek veľkých deformácii. Pre ohybové momenty a šmykové sily je uvažovaná 

Reissner-Mindlinova teória, čím sa 3D problém tenkých dosiek redukuje na 2D úlohu v 

prierezovej rovine dosky. Dizertačná práca sa tiež venuje centrálnej trhline na rozhraní 

magnetoelektroelastickej a elastickej vrstvy. Vyšetrované sú otvorenia trhliny, elektrické a 

magnetické potenciály a intenzitné koeficienty, ktoré sú počítané z hodnôt otvorenia trhliny. 

 Numerické výsledky predstavené v tejto dizertačnej práci ukazujú výhody použitia 

bezprvkovej MLPG metódy pre riešenie inžinierskych konštrukcií s MEE materiálovými 

vlastnosťami. 

Keywords: bezprvková lokálna Petrov-Galerkinova (MLPG) metóda; metóda pohyblivých 

najmenších štvorcov (MLS); magnetoelektrický efekt; magnetoelektroelastický materiál; 

funkcionálne gradientné materiály; von Karmanova teória dosiek; intenzitné koeficienty 
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Introduction 

Analysis of smart structures is currently in the scope of many engineers and researchers. The 

solution and complex engineering design problems of smart materials embedded in intelligent 

structures requires having an advanced computational tool in order to obtain results 

effectively and with required accuracy. It is necessary to develop advanced computational 

methods and modelling approaches taking into account specific properties of smart materials. 

A wide range of engineering applications of smart materials have been found recently. 

Improvements of the performance of engineering structures lead also to developments and 

applications of new structural materials. Smart materials are new class of multifunctional 

materials that have one or more properties that can be controlled or changed by action of 

external effects in predetermined way, so they act as energy transducers and can be applied as 

sensors and actuators. Special categories of smart materials are piezoelectric, electrostrictive 

and magnetostrictive materials. They have the capability to serve as both sensors and 

actuators. By putting together piezoelectric and magnetostrictive materials, we are able to 

create a new product, magnetoelectroelastic (MEE) material. In MEE materials, the magneto-

electric forces give raise to strains that can reduce the effects of the applied mechanical load. 

That is why MEE materials are solely investigated in the thesis. 

Up to date multilayered composites are mostly analyzed. Therefore, it could be interesting to 

investigate also composites, where the volume fraction of constituents is continuously varying 

in a predominant direction. This type of property is called as functionally graded property. 

The thesis keeps focusing on developing advanced numerical method for anisotropic 

functional graded magnetoelectroelastic (MEE) solids as well as layered composites. The 

solution of general boundary value problems for such kind of solids requires advanced 

numerical methods due to the high mathematical complexity.  

In recent years, meshless formulations are becoming popular due to their high adaptability 

and low costs to prepare input and output data in numerical analyses. The term “meshless” or 

“meshfree” stems from the ability of an approximation or interpolation scheme to be 

constructed entirely from a set of nodes without the need to connect them into elements. 

Meshless methods for solving partial differential equations (PDE) in physics and engineering 

sciences are a powerful new alternative to the traditional mesh-based techniques as finite 

element method (FEM) or boundary element method (BEM). Focusing only on nodes or 

points instead of elements, gives certain advantages to meshless approaches. 
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1. Outline and main contribution of the thesis 

The aims of the thesis are: 

• to provide a brief introduction to application of various smart materials applied in 

smart structures  

• to focus on more detail description of magnetoelectroelastic materials  

• to introduce meshless solution approach for the boundary value problems  

• to describe in detail the MLPG method, specification of local integral equations and 

moving least squares (MLS) approximation technique 

• to derive local integral equations for magnetoelectroelastic solid 

• to extend the formulation for layered composite 

• to analyze the enhancement of the magnetoelectric coefficient in layered or 

funcionally graded multiferroics 

• to derive local integral equations for axisymmetric circular plates made of funcionally 

graded MEE material 

• to derive local integral equations for nonlinear large deflection of rectangular MEE 

thick plates under a large deformation described by the Reissner– Mindlin theory 

• to present state-of-the-art in the field of crack anlyses in MEE material 

• to analyze interface crack between MEE and elastic layers 

2. Magnetoelectroelastic (MEE) material 

In the magnetoelectroelastic materials, we can observe a magnetoelectric (ME) effect. The 

ME effect was discovered in 1894 by Curie. It is defined as the ratio between the magnetic 

(electrical) field output over the electrical (magnetic) input. The coupling can be provided by 

materials in single phase or as composites. The single phases materials are represented by 

multiferroic magnetoelectric materials, in which both ferromagnetic and ferroelectric 

components are in the same phase, as well as magnetically ordered ferroelectric materials [1]. 

There are very few 'multiferroic' materials in nature or ones that have been synthesized in the 

laboratory that exhibit a stable and switchable both electrical polarization and magnetization 

[2]. From earlier investigations it is well known that some composite materials can provide 

superior properties compared to their virgin monolithic constituent materials. The ME 

composites have large magnitudes of the ME voltage coefficient. They are created from 

individual piezomagnetic and piezoelectric phases or individual magnetostrictive and 
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piezoelectric phases [3]. In MEE material, the ME effect is a product of piezomagnetism or 

magnetostriction, in which a mechanical deformation is caused by a magnetic field, and 

piezoelectricity, in which an electric potential is induced by the mechanical deformation [4]. 

In turn, an applied electric field induces a magnetization via the mechanical coupling between 

the constituents. In contrast to the intrinsic ME effect of single phase crystalline samples the 

composite ME effect manifests predominantly as nonlinear in the applied fields. 

Because of the complex nature of the ME interaction between the constituents the relation 

between the applied magnetic field and the voltage induced in the detection circuit is not 

simply linear as in the case of single-phase compounds. Due to the hysteretic nature of the 

ME effect, the composites may find applications in memory devices. The linear ME effect has 

a positive or a negative sign, depending on the annealing conditions (parallel or antiparallel 

magnetic and electric fields). In binary data storage devices the ME material can thus store 

information in two different states distinguished by the sign of the ME response. Such a 

memory will be an effective ‘read only’ memory, since the reading can be done at very high 

frequencies. Data writing is more difficult because it involves temperature annealing in 

magnetic and electric fields or the use of very high writing fields [3]. Further applications 

include magnetic field sensors and magnetically controlled optoelectronic devices. The 

transduction properties of the ME effect can also be employed in ME recording heads and 

electromagnetic pick-ups [5]. Historical perspective, status and future of multiferroic 

magnetoelectric composites are given in a review paper [6]. 

Constitutive equations of the coupling of the mechanical, electrical and magnetic fields in 

magnetoelectroelastic solids [4] are given as 

 ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )x x x x x x xij ijkl kl kij k kij kc e E d Hσ τ ε τ τ τ= − −  (2.1) 

 ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )x x x x x x xj jkl kl jk k jk kD e h E Hτ ε τ τ α τ= + +  (2.2) 

 ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )x x x x x x xj jkl kl kj k jk kB d E Hτ ε τ α τ γ τ= + +  (2.3) 

where  represent the stress tensor, the electric displacements, and the magnetic 

inductions, respectively. Material parameters are the elastic coefficients , dielectric 

permittivities and magnetic permeabilities . The coefficients for the piezoelectric, 

piezomagnetic, and magnetoelectric coupling are denoted by ,  and , 

iiij BD ,,σ

ijklc

jkh jkγ

kije kijd jkα
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respectively. Symbol τ  is used for time. The strain tensor , electric field vector and 

magnetic intensity vector are expressed through independent variables - displacements  

, electrical potential and magnetic potential . 

Governing equations for magnetoelectroelastic body under dynamic loading conditions are 

given by the balance of momentum and the scalar Maxwell’s equations as 

 , ( , ) ( , ) ( , )x x xij j i iX uσ τ τ ρ τ+ = ɺɺ  (2.4) 

 , ( , ) ( , ) 0x xj jD τ τ− Π =  (2.5) 

 , ( , ) 0xj jB τ =  (2.6) 

where iuɺɺ , ρ ,  and  represent the acceleration of the displacement, the mass density, the 

body force vector and the volume density of free charges, respectively. In case of static 

loading conditions, right-hand side of equation (2.4) is equal zero. 

3. Meshless MLPG method 

In many cases there is a need to solve complex geometrical domains, and quite often, 

nonlinear problems of engineering processes. Exact mathematical solutions are available for 

the simplest geometrical domains and mostly for linear problems. Computer based modelling 

and simulation techniques were introduced in parallel with development of computer 

technology. There is a great deal of commonality in the differential equations governing the 

engineering process and so we are able to make common computational tools for computer 

modelling and simulation. 

The finite element method (FEM) is well established and often used for the solution of 

general boundary value problems. The FEM in general would suffer from drawbacks such as 

locking in bending, demanding complicated mesh or re-meshing in problems of large 

deformations and C0 continuity of approximated fields in analyses of functionally graded 

material, which means that secondary fields such as stresses lack the continuity across the 

element interfaces. Another well established method to the FEM is the boundary element 

method (BEM), which is effective and convenient numerical tool. Unfortunately, the 

drawback of BEM is that the fundamental solution is not available for functionally graded 

magnetoelectroelastic solids. 

ijε iE

iH iu

ψ µ

iX Π
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Meshless methods are alternative computational techniques. Several meshless methods can be 

derived either from a weak-form formulation on the global domain or a set of local 

subdomains. In the global formulation, background cells are required for the integration of the 

weak-form. In the methods based on the local weak-form formulation no background cells are 

required and therefore they are often referred to as truly meshless methods. Meshless method 

used in this thesis is the meshless local Petrov-Galerkin (MLPG) method. This local 

formulation is using nodal points, which are spread on the analyzed domain and each of them 

is surrounded by a small local subdomain sΩ  as shown in Figure 3.1. This kind of method has 

advantages in higher adaptivity and lower cost in preparing input data for numerical analysis. 

It has attracted much attention due to their flexibility, and most importantly due to their ability 

in omitting the need for the human-labour intensive process of constructing geometric meshes 

[7]. Nodes can be simply added or deleted in desired position. The methods use also a local 

approximation to represent the trial function using the undetermined values (or the fictitious 

values) of the field variable at some randomly located nodes [8]. The moving least-squares 

(MLS) approximation is generally considered to be one of the best schemes to interpolate 

discrete data with excellent accuracy. The continuity of MLS approximation for 

approximation of unknown fields is given by the minimum between the continuity of the basis 

functions and that of the weight function [9]. So continuity can be tuned to a desired degree. 

In conventional discretization methods there is a discontinuity of secondary fields (gradients 

of primary fields) on the interface of elements. For modelling of continuously 

nonhomogeneous solids the approach based on piecewise continuous elements can bring some 

inaccuracies. Therefore, modelling based on C1 continuity, like in meshless methods, is 

expected to be more accurate than conventional discretization techniques. The MLPG method 

is a fundamental base for the derivation of many meshless formulations, since trial and test 

functions can be chosen from different functional spaces. Previous results showed excellent 

convergence and accuracy of meshless approaches applied to many engineering problems of 

classical elasticity [7] [10] [11]. Recently, the MLPG method with a Heaviside step function 

as the test functions functions [7] [11] [12] [13] has been applied to solve two-dimensional 

(2D) homogeneous piezoelectric [14] and magnetoelectroelastic problems [15].  
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Figure 3.1 Local boundaries for weak formulation s∂Ω , the domain xΩ  for MLS 

approximation of the trial function and the support area of weight function around node ix  

The MLPG method based on the local weak form of the governing equations (2.4)-(2.6) of 

MEE material is written over local subdomain sΩ . The local weak forms are then the starting 

point for deriving local integral equations with the use of Gauss divergence theorem and 

appropriate test function, in this case Heaviside unit step function. This finally yields 

following local integral equations 

 ( , ) ( , ) ( , ) ( ) ( , ) 0x x x x x
s su st s s

i i i i

L

t d T d X d u dτ τ τ ρ τ
+Γ Γ Ω Ω

Γ + Γ + Ω − Ω =∫ ∫ ∫ ∫ ɺɺ  (3.1) 

 ( , ) ( , ) ( , ) 0x x x
s sv sq sL

q d Q d dτ τ τ
+Γ Γ Ω

Γ − Γ − Π Ω =∫ ∫ ∫  (3.2) 

 ( , ) ( , ) 0x x
s sa sbL

s d S dτ τ
+Γ Γ

Γ − Γ =∫ ∫ . (3.3) 

where sΩ  is the local subdomain. sL  denotes the local boundary that is totally inside the 

global domain. stΓ , 
sqΓ  and sbΓ  are the parts of the local boundary which coincide with the 

global traction vector iT , normal component of the electric displacement vector Q  and 

normal component of the magnetic induction vector S  boundaries, respectively. Similarly, 

suΓ , svΓ  and saΓ  are the parts of the local boundary that coincides with the global 

displacement, electric potential and magnetic potential boundaries, respectively.  

According to the MLS method, the approximation of unknowns can be given as 
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 ( ) ( )
1

ˆ ( )x = x
n

h a a

a

u , uτ φ τ
=
∑ , ( ) ( ), ,

1

ˆ ( )x = x
n

h a a
j j

a

u , uτ φ τ
=
∑  (3.4) 

where the nodal values ˆ ( )au τ  are fictitious parameters for unknowns at time τ  and ( )aφ x  is 

the shape function associated with the node a. Collecting the discretized local integral 

equations together with the discretized boundary conditions, one obtains a complete system of 

ordinary differential equations (ODE) which can be solved by the Houbolt method. 

4. Enhancement of the magneto-electroelastic coefficient 

A strong ME effect has been recently observed by Pan and Wang [16] in artificially fabricated 

multiferroic composites. Thus, the 2D layered (Figure 4.1a) and FGM (Figure 4.1b) 

composites with a pure piezomagnetic behaviour on its bottom surface and a pure 

piezoelectric one on its top surface are investigated.  

 a) b) 

Figure 4.1 Geometry of: a) two-layered multiferroic composite; b) FGM multiferroic 

 a) b) 

Figure 4.2 The longitudinal ME effect: a) out-of-plane; b) in-plane 

In case of layered composite, it is needed to simulate jumps in the secondary field. Two sets 

of collocation nodes are assigned on both the +side and the –side of the material interface at 

the same location, but with different material properties. The MLS approximations are carried 

out separately on particular sets of nodes within each of the homogeneous domains. 

 
 

 

 



 

Therefore, the high order continuity is kept within each homogeneous part, but not acr

their interface.  

In the numerical examples, b

potential 0.1Aµ = −  is also applied on the bottom surface of the PM 

composite, the volumetric ratio of the PE layer is introduced as 

piezoelectric layer (eh ) is changed

observe the influence of the volumetric ratio of the PE/PM layers on the electric potential on 

the top surface of the PE layer in 

potential on the top surface inc

continuously varying along the

plane 33( )α  and in-plane 11( )α

can observe that the maximum ME coefficient values are

about 0.5. The in-plane ME coefficient 

coefficient 33( )α . Recently, Pan and Wang 

multiferroic composites, where the in

out-of-plane one. In considered FGM multiferroic composites, one can see more enhanced in

plane ME coefficient. 

Figure 4.3 Variation of the electric potential 
along 1x  on the top surface of PE layer 

11 

Therefore, the high order continuity is kept within each homogeneous part, but not acr

bottom of the piezomagnetic layer is fixed 

applied on the bottom surface of the PM layer.

he volumetric ratio of the PE layer is introduced as /( )f e e mV h h h= +

is changed and the piezomagnetic layer (mh ) is unchanged

observe the influence of the volumetric ratio of the PE/PM layers on the electric potential on 

the top surface of the PE layer in Figure 4.3. With increasing PE layer thickness the electric 

potential on the top surface increases. In case of the FGM multiferroic, material properties are 

continuously varying along the plate thickness using polynomial distribution

11( ) magnetoelectric coefficients are presented in 

can observe that the maximum ME coefficient values are obtained for 

plane ME coefficient 11( )α  is significantly larger than the out

. Recently, Pan and Wang [16] observed a similar phenomenon for layered 

multiferroic composites, where the in-plane ME coefficient was about 2 times larger than the 

In considered FGM multiferroic composites, one can see more enhanced in

 

Variation of the electric potential 
on the top surface of PE layer  

Figure 4.4 Variation of the magnetoelectric 
coefficient versus the volumetric ratio 

Therefore, the high order continuity is kept within each homogeneous part, but not across 

ottom of the piezomagnetic layer is fixed 3 0u = . Magnetic 

layer. In the layered 

/( )f e e mV h h h= + , where the 

is unchanged. One can 

observe the influence of the volumetric ratio of the PE/PM layers on the electric potential on 

. With increasing PE layer thickness the electric 

material properties are 

plate thickness using polynomial distribution. Both out-of-

are presented in Figure 4.4. One 

 exponent value of 

is significantly larger than the out-of-plane ME 

observed a similar phenomenon for layered 

plane ME coefficient was about 2 times larger than the 

In considered FGM multiferroic composites, one can see more enhanced in-

 

f the magnetoelectric 
coefficient versus the volumetric ratio  
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5. Circular MEE plates with FGM properties 

Many piezoelectric and magnetoelectroelastic components have plate-like shapes, often 

circular. Some of these components like resonators and filters are used for the purpose of 

frequency control. Therefore, the MLPG method is applied for circular plate bending analyses 

assuming also functionally graded magnetoelectroelastic material properties. Using the 

cylindrical coordinates [ ], ,r zθ=x , 3D axisymmetric body is reduced to a 2D problem with 

unknowns on the cross-sectional domain as shown in Figure 5.1. Therefore, nodal points are 

introduced and spread on the analyzed 2D domain.  

1=r

2

h

a

3=z

Γ

Ω

 

Figure 5.1 Geometry and generation of a circular plate 

In the cylindrical coordinate system, the governing equations (2.4)-(2.6) take the form 

, ,

1
( , , ) ( , , ) ( , , ) ( , , ) ( ) ( , , ) ( , , )rr r rz z rr r rr z r z r z r z u r z X r z

r ϕϕσ τ σ τ σ τ σ τ ρ τ τ + + − − = −  x ɺɺ  (5.1a) 

 , ,

1
( , , ) ( , , ) ( , , ) ( ) ( , , ) ( , , )rz r zz z rz z zr z r z r z u r z X r z

r
σ τ σ τ σ τ ρ τ τ+ + − = −x ɺɺ  (5.1b) 

 , ,

1
( , , ) ( , , ) ( , , ) 0r r z z rD r z D r z D r z

r
τ τ τ+ + =  (5.2) 

 , ,

1
( , , ) ( , , ) ( , , ) 0r r z z rB r z B r z B r z

r
τ τ τ+ + = . (5.3) 

Then, local boundary-domain integral equations (3.1)-(3.3) are converted into  

( )1
( , , ) ( ) ( , , ) ( , , )

s s s s

rb b rr r rr z n d d u r z d X r z d
r ϕϕσ τ σ σ ρ τ τ

∂Ω Ω Ω Ω

Γ + − Ω − Ω = − Ω∫ ∫ ∫ ∫x ɺɺ  (5.4a) 

1
( , , ) ( , , ) ( ) ( , , ) ( , , )

s s s s

zb b rz z zr z n d r z d u r z d X r z d
r

σ τ σ τ ρ τ τ
∂Ω Ω Ω Ω

Γ + Ω − Ω = − Ω∫ ∫ ∫ ∫x ɺɺ  (5.4b) 

 
1

( , , ) ( , , ) 0
s s

b b rD r z n d D r z d
r

τ τ
∂Ω Ω

Γ + Ω =∫ ∫  (5.5) 



 

 
s s∂Ω Ω
∫ ∫

In the numerical example, the plate is loaded 

surface. An exponential variation of 

coefficients  and 4.054 are considered. 

material parameters on the top surface of the plate are doubled with respect to those on the 

bottom plate surface. The numerical results of variations of the deflections for the clamped 

plate with radial coordinate are given 

their homogeneous counterpart.

than those in a homogeneous case, the mechanical deflection is reduced for the

larger reduction is observed for a larger gradation parameter.

electrical potential on the top surface of the plate with the radial coordinate is presented in 

Figure 5.3. The value of the 

radius from the plate centre for the homogeneous case. However, for the FGM plate the 

electrical potential is gradually growing with reaching the maximum value at the plate centre. 

One can observe that the electrical potential in the FGM plate is significantly larger than in a 

homogeneous plate. Therefore

sensing of deformations than homogeneous ones.

Figure 5.2 Variation of deflections
radial coordinate for clamped 
magnetoelectroelastic plates 

6. Large deflections of rectangular 

A plate of total thickness h with homogeneous MEE material properties 

surface occupying the domain 

6.9315γ =

13 

1
( , , ) ( , , ) 0

s s

b b rB r z n d B r z d
r

τ τ
∂Ω Ω

Γ + Ω =∫ ∫  

the plate is loaded by stationary mechanical tension on the top plate 

An exponential variation of material coefficients is assumed, where two 

and 4.054 are considered. For the first exponential coefficient the 

material parameters on the top surface of the plate are doubled with respect to those on the 

The numerical results of variations of the deflections for the clamped 

plate with radial coordinate are given in Figure 5.2. The numerical results are compared with 

their homogeneous counterpart. Since the mechanical parameters for the FGM plate are larger 

in a homogeneous case, the mechanical deflection is reduced for the

larger reduction is observed for a larger gradation parameter. The variation of 

electrical potential on the top surface of the plate with the radial coordinate is presented in 

 electric potential is almost uniform over the large part of the 

radius from the plate centre for the homogeneous case. However, for the FGM plate the 

electrical potential is gradually growing with reaching the maximum value at the plate centre. 

serve that the electrical potential in the FGM plate is significantly larger than in a 

refore, FGM magnetoelectroelastic plates are more convenient for 

sensing of deformations than homogeneous ones. 

 

deflections with the 
radial coordinate for clamped 

Figure 5.3 Variation of el. potentials on the 
top surface with the radial co
clamped magnetoelectroelastic plates

Large deflections of rectangular MEE plates 

with homogeneous MEE material properties 
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The numerical results of variations of the deflections for the clamped 

The numerical results are compared with 

Since the mechanical parameters for the FGM plate are larger 

in a homogeneous case, the mechanical deflection is reduced for the FGM plate. A 

The variation of the induced 

electrical potential on the top surface of the plate with the radial coordinate is presented in 

potential is almost uniform over the large part of the 

radius from the plate centre for the homogeneous case. However, for the FGM plate the 

electrical potential is gradually growing with reaching the maximum value at the plate centre. 

serve that the electrical potential in the FGM plate is significantly larger than in a 

more convenient for 

 

Variation of el. potentials on the 
top surface with the radial coordinate for 
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with homogeneous MEE material properties and with its mean 

. The axis 3x z=  is 
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perpendicular to the mid-plane ( Figure 6.1) and the origin is located at the bottom of the 

plate. 

M21

M12
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h

q( ,t)x

 

 Figure 6.1 Sign convention of bending moments and forces for a plate 

The MLPG method is proposed to solve problems for thick MEE plates under a large 

deformation described by the Reissner– Mindlin theory. The electric and magnetic field 

components are assumed to be zero in the in-plane directions of the plate. A quadratic power-

expansion of the electric and magnetic potentials in the thickness direction of the plate is 

considered. The bending moment, normal and shear force expressions are obtained by 

integration through the plate for the considered constitutive equations. The Reissner–Mindlin 

governing equations of motion are subsequently solved for a time-harmonic plate bending 

problem. The Reissner– Mindlin theory reduces the original 3D thick plate problem to a 2D 

problem. In the used meshless method, nodal points are randomly distributed over the neutral 

plane of the considered plate. 

Time-harmonic load is a special case of the general dynamic analysis. Time variation of 

physical fields is given by the frequency of oscillation ω . Then the governing equations for 

the amplitudes have the following form [17][18]: 

 2
, ( , ) ( , ) ( , )x x xI

MM Q I wαβ β α αω ω ω ω− = −  (6.1) 

 ( ) 2
, 3, 3,

( , ) ( , ) ( , ) ( , ) ( , )x x x x xI
QQ T w q I wα α αβ β α

ω ω ω ω ω ω+ + = −  (6.2) 

 2
, 0( , ) ( , ) ( , )x x xQT q I uαβ β α αω ω ω ω+ = − ,     ∈ Ωx  (6.3) 

and the additional set of two governing equations is given by Maxwell equations as 
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 2 2
31 1,1 32 2,2 33 332 2

( , ) ( , )
( , ) ( , ) 2 2 0

x x
x xe w e w h

h h

ψ ω µ ωω ω α+ − − =  (6.4) 

 2 2
31 1,1 32 2,2 33 332 2

( , ) ( , )
( , ) ( , ) 2 2 0

x x
x xd w d w

h h

ψ τ µ τω ω α γ+ − − = . (6.5) 

where M αβ , IQα , Tαβ  are the bending moments, the linear part of the shear force and normal 

forces, respectively, with indices α,β=1,2. wα  and 3w  are rotation around xα -axis and out-of-

plane deflection, respectively. A transversal load is denoted by ( , )q τx , and ( , )qα τx  

represents the in-plane load. If the mass density is constant throughout the plate thickness, one 

can obtain 

3

12M

h
I

ρ= ,  QI hρ= . 

Applying the Gauss divergence theorem to the governing equations (6.1)-(6.3) in the local 

weak-form and choosing the unit step functions for the test functions in each subdomain, then, 

the local weak-forms are transformed into the following local integral equations (LIEs) 

 
2( , ) ( , ) ( , ) 0x x x

s s s

I
MM d Q d I w dα α αω ω ω ω

∂Ω Ω Ω

Γ − Ω + Ω =∫ ∫ ∫  (6.6) 

 
2

3 3,( , ) ( ) ( , ) ( , ) ( , ) ( , ) 0x x x x x x
s s s s

I
QQ n d I w d T w d q dα α α βω ω ω ω ω ω

∂Ω Ω ∂Ω Ω

Γ+ Ω+ Γ+ Ω =∫ ∫ ∫ ∫  (6.7) 

 
2

0( , ) ( , ) ( , ) 0x x x
s s s

QT d q d I u dα α αω ω ω ω
∂Ω Ω Ω

Γ + Ω + Ω =∫ ∫ ∫  (6.8) 

where s∂Ω  is the boundary of the local subdomain, ( , ) ( , ) ( )x x xM M nα αβ βω ω=  and

( , ) ( , ) ( )x x xT T nα αβ βω ω=  are the normal bending moment and the traction vector, 

respectively. nα  stands for the unit outward normal vector to the boundary s∂Ω . 

In order to linearize the problem, the nonlinear terms will be considered in the local integral 

equations (LIE) iteratively. It means that nonlinear terms computed in the (k-1)th iteration are 

considered in the LIE for kth iteration. Insertion of the MLS-discretized moment, tractions 

and shear force fields into the local integral equations (6.6) - (6.8) yields the discretized local 

integral equations. If the MEE plate is used as a sensor, the plate is under a mechanical load. 

Then, the system of the discretized LIE has to be supplemented by Eqs. (6.4)-(6.5). In the kth 

iteration step the linearized boundary value problem is resolved. The iteration process is 

stopped if the differences between the deflections in two consecutive steps are less than the 

prescribed tolerance. 
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In the numerical examples, a square MEE plate with a side-length 0.254a m= is analyzed to 

verify the proposed computational method. The total thickness of the plate is 0.012h m= . On 

the top surface a uniform mechanical load is applied. Simply supported boundary conditions 

are considered.  

The variation of the central plate deflection (1 2 0x x= = ) with the intensity load is presented 

in Figure 6.2. The intensity load is given by a nondimensional parameter 4 4
11q qa c h=ɶ . Two 

different plate thicknesses are considered here. The plate deflection 3w  is normalized by the 

plate thickness. It can be seen that the plate thickness has only a slight influence on the 

normalized deflections. Variations of the electric potential along the 1x -coordinate are 

presented in Figure 6.3 at the nondimensional intensity load 9.42q =ɶ . At this load intensity 

one can see clearly that nonlinear effect is apparent. Furthermore the difference of the induced 

electrical potentials based on the linear and nonlinear theory is more than 20%. The maximum 

electric potential for the simply supported plate is reached at the centre of the plate. The 

magnetic potential at the plate centre is proportional to the electric potential with 

20.61 10φ µ −= ⋅  and this value corresponds to the material parameters ratio 31 33 31 33d h e γ . 

7. Cracks in MEE solids 

The MEE materials can be used as sensors and actuators for active vibration control of 

various elastic structures. In this kind of the structures, an interface is formed between elastic 

Figure 6.2 Variation of the plate deflection at 
the centre of a simply supported plate 

Figure 6.3 Variation of the electric potential 
along the 1x -coordinate 
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and magnetoelectroelastic material. The material discontinuity in laminated composite 

materials leads to large interlaminar stresses and the possibility of initiation and propagation 

of cracks. For this reason, a crack analysis of an interface between two dissimilar materials is 

important.  

The meshless local Petrov-Galerkin (MLPG) method is applied to solve the boundary value 

problem by same way as in case of two layered composite in Chapter 4. The intensity factors 

can be computed as an interface crack between two dissimilar anisotropic and linear 

magnetoelectroelastic materials by the generalized crack-opening displacements (CODs) [19] 

as 

21 1
4

5
1 1 1 1 2 2

( ) ( )
2 (1 2 )cosh( ) (1 2 )cosh( ) (1 2 )cosh( )

ww w
u H H w

i i
IV

V

K rr Kr Kr
r K

i i

εε ε

π ε πε ε πε ε πε

−− 
∆ = + + + +  + − − 

 

 
(7.1)

 where I IIK K iK= + is the complex stress intensity factor, IVK  is the electric displacement 

intensity factor and VK  is the magnetic induction intensity factor, an overbar denotes the 

complex conjugate and  is the distance from the crack-tip to measured data point. The 

complex Hermitian matrix is determined by the material properties from the both layers 

and computed from the eigenvalue problem as well the bimaterial constants  and  and the 

eigenvectors ,  and 5w  are determined by the eigenvalue problem as shown in [19]. 

In numerical examples, a finite strip with the central interface crack is considered. The crack 

with length 2 1a m=  along the axis 1x , the width of the strip 2 2 / 0.4w a=  and height of each 

layer 1.2I IIh h w= =  is assumed. The strip is under static mechanical load 8
0 10 Paσ =  on the 

top of MEE layer. The results for the crack-displacements, which are computed on both 

crack-faces are presented in Figure 7.1. Larger crack-opening-displacement on the lower 

crack-face due to smaller material stiffness parameters is clearly indicated. The variations of 

the electrical and magnetic potentials along the crack-faces are given in Figure 7.3 only for 

upper crack face, which corresponds to MEE material. Intensity factors are computed from 

general crack opening displacements. The value of stress intensity factor 8 1/21.91 10IK Pam⋅=  

is significantly larger in comparison with 8 1/21.4 10IK Pam⋅=  [20] that corresponds to the strip 

of same geometry but homogenous MEE material properties in entire solid. 

r

H

1ε 2ε

w 4w



 

Figure 7.1 The crack displacement under 
mechanical loading 

8. CONCLUDING REMARKS

The meshless local Petrov-Galerkin method (MLPG) method is a numerical method which 

offers easy preparation of input data, because no 

with more flexibility, because 

by PDE with variable coefficients, 

proposed method is a truly meshless method, which requires neither domain el

background cells in either the interpolation or the integration. In all mentioned analyses, nodal 

points are distributed over the investigated domains. No finite elements are required. Each 

node is the center of a circle surrounding this node. T

into small overlapping circular subdomains. The weak

Heaviside step function as the test functions is applied to derive local integral equations. After 

performing the spatial MLS appro

certain nodal unknowns is obtained in case of transient analysis. Then, the system of the 

ordinary differential equations of the second order resulting from the equations of motion is 

solved by the Houbolt finite

computational method based on local integral equations with a meshless approximation seems 

to be very promising for presented coupled field analyses. Majority of numerical results are 

compared with the results obtained by the FEM 

The applications of magnetoelectroelastic materials to smart structures have certain 

advantages in comparison to
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The crack displacement under Figure 7.2 The electrical and magnetic 
potentials on the crack face of MEE layer 
under mechanical load 

CONCLUDING REMARKS  

Galerkin method (MLPG) method is a numerical method which 

preparation of input data, because no element mesh data are required

with more flexibility, because it allows straightforward implementation of problems described 

by PDE with variable coefficients, compared to classical computational methods

proposed method is a truly meshless method, which requires neither domain el

background cells in either the interpolation or the integration. In all mentioned analyses, nodal 

points are distributed over the investigated domains. No finite elements are required. Each 

node is the center of a circle surrounding this node. Therefore the analyzed domain is divided 

into small overlapping circular subdomains. The weak-form on small subdomains with a 

Heaviside step function as the test functions is applied to derive local integral equations. After 

performing the spatial MLS approximation, a system of ordinary differential equations for 

certain nodal unknowns is obtained in case of transient analysis. Then, the system of the 

ordinary differential equations of the second order resulting from the equations of motion is 

Houbolt finite-difference scheme as a time-stepping method. The present 

computational method based on local integral equations with a meshless approximation seems 

to be very promising for presented coupled field analyses. Majority of numerical results are 

compared with the results obtained by the FEM with good agreement.  

The applications of magnetoelectroelastic materials to smart structures have certain 

to piezoelectric materials. Less material could be used for

The electrical and magnetic 
ntials on the crack face of MEE layer 

Galerkin method (MLPG) method is a numerical method which 

mesh data are required and provides 

implementation of problems described 

compared to classical computational methods. The 

proposed method is a truly meshless method, which requires neither domain elements nor 

background cells in either the interpolation or the integration. In all mentioned analyses, nodal 

points are distributed over the investigated domains. No finite elements are required. Each 

herefore the analyzed domain is divided 

form on small subdomains with a 

Heaviside step function as the test functions is applied to derive local integral equations. After 

ximation, a system of ordinary differential equations for 

certain nodal unknowns is obtained in case of transient analysis. Then, the system of the 

ordinary differential equations of the second order resulting from the equations of motion is 

stepping method. The present 

computational method based on local integral equations with a meshless approximation seems 

to be very promising for presented coupled field analyses. Majority of numerical results are 

The applications of magnetoelectroelastic materials to smart structures have certain 

piezoelectric materials. Less material could be used for 
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producing the strains of same magnitude. In the Chapter 4, two-layered composite consisting 

of two dissimilar piezoelectric (PE) and piezomagnetic(PM) materials with thickness he and 

hm, respectively, is investigated by MLPG method. The ME voltage coefficient increases with 

increasing thickness ratio hm/he, between the magnetostrictive and the piezoelectric layers 

because the compressive stress is higher in thinner piezoelectric layer. Magnetoelectric 

coefficients for functionally graded material parameters in entire composite plate are also 

investigated. The parameters are continuously varying along the plate thickness using 

polynomial distribution. The magnetic intensity or mechanical load causes deformations in 

the piezomagnetic constituent of the FGM composite. The composite plate deformations 

induce electric potential at the piezoelectric constituent of the FGM composite. At an optimal 

gradation of the piezoelectric or piezomagnetic constituents one can obtain a significant 

enhancement of the magnetoelectric coefficient. The in-plane coefficient is significantly 

larger than the out-plane one. Understanding of the FGM plate gives a chance to design smart 

structures with an optimal magnetoelectric coefficient. 

In the Chapter 5, the MLPG is applied to a circular plate with functionally graded magneto-

electro-elastic material properties. Due to axial symmetry it is sufficient to analyze only the 

cross section of the plate. Numerical results for clamped plates showed that induced electrical 

potential is significantly enhanced in FGM plates. Therefore, FGM plates are convenient for 

sensing mechanical deformations. Further research to optimize FG material properties is 

needed, to get a strong electrical signal from smart MEE structures.  

The MLPG method is proposed for nonlinear large-deflections of MEE plates under 

mechanical and electrical loads in Chapter 6. Von Karman’s theory of large deflections is 

applied for Reissner–Mindlin plates with MEE properties. If a quadratic variation of the 

electric and magnetic potentials along the plate thickness is assumed, the original 3D thick 

plate problem is reduced to a 2D problem. Nodal points are randomly distributed over the 

mean plane of the considered plate. Numerical results showed that coupling material 

parameters have a vanishing influence on the plate deflection under a pure mechanical load. 

Also their influence on the eigen-frequencies is vanishing. Induced electric and magnetic 

potentials are lower based on the nonlinear large-deformation theory than those in the 

corresponding linear case; however, their spatial variations in both cases are similar. 

Interesting subject of a study are crack problems. Chapter 7 analyzes composite strip that 

consists of magnetoelectroelastic layer on the top and elastic layer on the bottom. A central 
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crack is considered on the interface. MEE layer on the top is intended to act as an actuator and 

elastic layer on the bottom is clamped. On the crack face of elastic layer, large crack opening 

displacement is observed only under mechanical load. The stress intensity factor is significant 

larger than one in MEE materials considering the entire domain. 

Numerical results presented in this thesis have shown unique properties of the meshless 

MLPG method for the analysis of engineering structures with MEE material properties. 

Focusing on nodes instead of finite elements bring certain advantages, especially in the 

analysis of FGMs. Developed numerical solutions and computational procedures may 

contribute to broader application of MEE materials and also facilitate the analysis of complex 

engineering problems. 
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