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Abstract

This dissertation thesis aims to contribute toHertunderstanding of phenomena by
development of advanced meshless formulationsdhutien of general problems of
continuum mechanics. Meshless computational tedsidor numerical analysis of
bending problems of beams and plates are propd@$ede is presented the derivation
of the unified formulation of governing equatiorts homogeneous and functionally
graded (FG) plates, which includes the Kirchhoff#edheory (KLT) as well as the'l
and 3 order shear deformation plate theory (SDPT). Moeepthe formulation is
extended to describe the physical processes oflebupermoelasticity in bending
problems of functionally graded plates. To faciétdhe numerical solution of rather
complex governing equations, we propose the stfmngulation combined with
Moving Least Square (MLS) approximation techniqued/ar Point Interpolation
Method (PIM) for field variables and their deriwags with preserving the physical
nature of problems.

The numerical experiments presented in this diaBert thesis deal with static and
dynamic analysis of circular and/or square platesemogeneous as well as
functionally graded material (FGM) properties aomsidered for both the elastic and
coupled thermoelastic problems. The weak point afventional strong meshless
formulations for problems involving high order detives is low accuracy and
computational inefficiency due to such derivativeBhis problem has been
successfully overcome by decomposing the origimeblem into coupled problems
with lower order derivatives.

Results presented in the thesis show that, theogesb and developed meshless
formulations exhibit excellent rate of convergenck accuracy, and acceptable
computational efficiency. Furthermore, there iseaed lot of new phenomena and
coupling effects due to multifield interactions appng in FGM plates (beams).

Keywords

functionally graded materials; Kirchhoff-Love thplate bending theory;*1and 3
order shear deformation plate theory; static, dynaamd thermoelastic problems;
coupling effects; meshless approximation; strongmfdation; decomposition
technique



Abstrakt

Této dizertana praca si kladie za ¢iprispig’ k hlbSiemu pochopeniu javov vyvojom
progresivnych bezprvkovych formulacii pre rieSemieobecnych okrajovych dloh
mechaniky kontinua. Presély numerickej analyzy okrajovych tloh ohybu noswila
dosiek je rozpracovana bezprvkova v§imwa metéda. V praci je prezentované
odvodenie zjednotenej formulacie riadiacich rovpi® okrajové Ulohy dosiek s
homogénnymi alebo funkcionalne gradovanymi (FG) emakovymi vlastnogami,
ktoré v sebe zdha klasickd teériu ohybu tenkych dosiek (Kirchhofive teéria -
KLT) ako aj Smykovo-deformiml te6riu ohybu dosiek prvého a tretieho radu
(SDPT). Tato formulacia je rozSirena aj na popisdyrikalnych javov a procesov pri
ohybe funkcionalne gradovanych dosiek v termoeldsti Z dévodov Uahtenia
numerického rieSenia pomerne zlozitych riadiaciabvnfc, navrhujeme silnd
formulaciu v kombinacii s aproxiniaou technikou pd@ Pohyblivej metddy
najmensich Stvorcov (MLS) alebo Bodovej intergakg metédy (PIM).

Numerické experimenty uvedené v tejto diz&mt praci su venované statickej a
dynamickej analyze kruhovych a Stvorcovych dosiékiumerickych simulaciach s

uvazované elastické a viazané termoelastické ok#ajdlohy pre dosky s

homogénnymi, ako aj funkcionalne gradovanymi mateviymi (FGM) viastnog&ami.

Slabou strankou konveénej silnej bezprvkovej formulacie pre ulohy s dégiami
vysokych radov je nizka presnoa vypatova efektivnog z dévodu tychto derivacii
po’nych premennych. Tento nedostatok bol UspeSneémdsty rozkladom pévodnej
okrajovej Ulohy na systém viazanych okrajovych (gohizSimi derivaciami gmych
premennych.

Z vysledkov prezentovanych v tejto praci vyplyva wavrhované a rozpracované
bezprvkové formulacie vykazuji vynikajicu konvergen presnosti a prijafed
vypotova efektivnos. Naviac v praci je odhalenych vaicero javov a tfek
previazanosti vznikajlcich v désledku interakcillipeo funkcionalne gradovanych
dosk&ch a nosnikoch.

KPuéové slova

funkionalne gradované materialy; klasicka tedriai€elk; tedria Smykovych deformacii
dosiek prvého a tretieho radu; efekty previazanodékompozicia; bezprvkové
aproximacie; termoelasticita
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1 Introduction

Continuum mechanics is a branch of physical scietitat deals with the deformation
and motions of continuous material media under itfilsence of external effects.
Mathematical models of the continuum mechanicsusteally formulated as initial-
boundary value problems for partial differentiabatjons being served as governing
equations. In most cases, these equations areulliffio be solved analytically in a
closed form, and we have to find approximation rad¢hto the numerical solution of
boundary value problems. The mathematical foundatioof most popular
approximation methods of solutions of the boundsgjue problems (BVP) in
engineering resp. continuum mechanics were finsé¢ published by Galerkin [1] and
Ritz [2].

In the 20th century with the development of highrf@enance computers,
simultaneously got the computer-based modelling gindulation of structures more
and more important role in the engineering companat During the century several
approximation methods were developed for the smhgtiof BVP in engineering
practice, for example the Finite Element Method NBJE[3], [4]), Finite Volume
Method (FVM) [5], Boundary Element Method (BEM) [@}leshless methods ( [7],
[8]), etc.

Plates are considered as the one of the most immocomponents of engineering
applications. They are widely used in civil engifieg, aerospace crafts and other
branches of advanced engineering practice. Sewelate theories have been
developed for analysis of thin and/or thick elagtiates. It is well known that in the

Kirchhoff-Love theory (KLT) [9] of bending of thinelastic plates the shear
deformations are omitted and the deflections canabeulated separately from the in-
plane deformations in homogeneous plates. BesideXlLd there have been

developed generalized shear deformation theoriekuding the first-order shear

deformation theory (FSDT) [10] and higher-orderahdeformation theory (HSDT)

[10] which account for transverse shear strainssarebses in contrast to KLT.

In the last decades of previous century the appdicaof laminated composite

structures became to the part of engineering mecti

Besides the advantages of such structures, the m@i&dvantage consists in
delamination due to discontinuities of stressesnterfaces. A great effort has been
done to overcome this shortcoming.



Nowadays the modern technologies of material emging such as functionally
graded materials (FGM) with continuous spatial atiwn of properties enable us to
replace the laminated composites by FGM [11].

The formulation of boundary value problems for stawes with such a complex
material properties leads to complicated governdggiations described by partial
differential equations with variable coefficienf@ne of the main objectives of this
thesis is the correct formulation of such boundaalue problems and their accurate
and stable solution by meshless methods.

1.1  Propositions of the dissertation thesis

The aims of the thesis are:

 Proposal and development of new meshless formaktimr numerical
solution of plate bending problems, with implemegtin computer codes

e Proposal and development of meshless formulationsdupled problems of
continuum mechanics (e.g. thermal loading of platéth implementing in
computer codes.

» Development of reliable numerical techniques foe t¥olution of plate
problems with including continuously variable méakcoefficients and/or
other design parameters.

* Investigation of the numerical stability, convergenand efficiency of
proposed computational schemes.

2  Current trends in solutions of boundary value probems in continuum
mechanics

The effects and processes in continuous media eatebcribed faithfully within the

theory of continuous media which is a phenomenghigitheory dealing with

macroscopic characteristics of the media instead aficroscopic description. The
macroscopic state in a continuous medium is chariaed by classical fields obeying
certain governing equations (or equations of motiamd constitutive relationships
with the current state being determined by exteimglacts and specified initial-
boundary conditions. Thus, a typical task in camtim mechanics is to solve an
initial-boundary value problem for some partialfeiiéntial equations (PDE). The
closed form solutions by using analytical methods available only for simplified

problems, while in engineering practise we needude numerical method to get
approximate solutions.

To overcome the mathematical difficulties of sadutiof initial-boundary value
problems in real engineering practise, various rdiszation methods have been
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proposed and developed. The field variables arkaced by certain approximations
within subdomains with reducing the infinite numhsrdegrees of freedom into a
finite one represented by nodal unknowns. The nodikhowns are calculated from a
system of algebraic equations resulting either fitbm collocation of the governing
equations and the prescribed boundary conditiomgmin collocation points (strong
formulations) or by integrations over finite subrdins in weak formulations. There
have been developed lot of discretization techrglike the finite strip method (
[12],), the finite difference methods (FDM) ( [1B]the finite element method (FEM) (
[14], [15], [16]),the extended finite element math(XFEM)( [17], [18]), the scaled
boundary finite element method (SBFEM) ( [19],) ahd boundary element method
(BEM) ( [20], [21]). Although these classical distization methods are well
developed and they are still enriched by some neweldpments (see the above
references), in the last two decades a great attehas been paid to the development
of mesh-free formulations (see e.g. [2&|ith using meshless approximations instead
of element based approximations such as used in &iVBEM.

3 Introduction to meshless methods

Meshless methods for solving PDE in engineering scignces are new powerful
alternatives to the element-based computationahoast Focusing on nodes instead
of elements used common in the FEM and BEM, thehiass approaches have
certain advantages [7].

In the last decades the meshless methods havetattrenuch attention due to their
potential in omitting the need for human-laboureirgive process of constructing
geometric meshes, remeshing in evolving solutions This is very useful in
problems with moving boundaries, like machininggass simulations or penetration
problems. Furthermore, numerical difficulties whichlate to methods based on
element use discretization, like locking and distor of elements, when element
becomes infinitely stiff, are eliminated. One conkime also other advantages such as
elimination of discontinuities occurring on elemeinterfaces in element-based
methods, elimination of numerical instabilities die large distortion of finite
elements, convenient applicability to modelling agple media, etc. The main
objective of the meshless methods is to get ri¢bpfht least reduce the difficulty of
meshing and remeshing the entire structure, byngddr deleting nodes in entire
structure.

The meshless method was first time presented bgdBirand Monaghan ( [23], [24]).
It was the smooth particle hydrodynamics (SPH) wetfor modelling astrophysical
phenomena. The development of meshless methodsasen rapidly, mainly after
publishing of Diffuse Element Method by Nayroles at [25]. Several so-called
meshless method were developed, like Element Fraderkin method (EFG) [26],
Reproducing Kernel Particle Method (RKPM) [27], tRartition of Unity Finite

Element Method (PUFEM) [28] and Meshless Galerkiethmds using Radial Basis
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Functions (RBF) ( [29], [30]). It should be mentgmh some review papers was
published about the research of the above mentiorettdods ( [31], [32]).

The principal difference between these so-calleghiess methods is only in the
techniques, used for interpolating of trial funatiof unknown field variables. Even
though mesh is not required in these methods mirtterpolation of the trial and test
function, the use of shadow elements (“backgrourebsh®s”) is necessary for the
integration in weak formulations considered in glbbense. These methods are not
truly meshless.

In the recent decades, truly meshless methods developed for linear and non-
linear boundary value problems of continuum meat®mnHistorically older is the
meshless local boundary integral equation (LBIEYhmé by Zhu et al. [33], which
appeared to be a special class of the more genashless local Petrov-Galerkin
(MLPG) method in [34] and [35]. In truly meshlesstimds, the domain and/or
boundary meshes are not required either for purpbsegerpolation of field variables,
or for integration of the governing equations inakdorm. All relevant integrals can
be easily evaluated over regularly shaped locabisoiains (spheres for 3-D and
circles for 2-D problems, in general). The MLPG haet was employed for solution
of static ( [36], [37]) and dynamic [38] fractureeohanics problems, as well as for
solution of plate bending problems ( [39];) and forany other engineering
applications in various fields of science.

3.1 Approximation techniques

The approximation (trial) function is the fundamantaspect of every numerical
method, with discretizing the continuous media. gight function, which plays an

important role in the performance of the methodsyded in all varieties of meshless
methods. The compact support of weight functionegia local character to the
meshless methods. The meshless methods constrpobxapations absolutely in

terms of nodal points, in contrast of mesh-basethoats.

3.1.1 Moving Least Squares method

In this chapter, we explain the concept of the @mpproximation Node (CAN)
MLS approximation proposed by Sladek et al. [40{iWit going into details [41], the

approximation of field variablai(x) around the central approximation nod& can
be expressed by

N
up) =Y Pf%d) , a=n(gq (3.1)

a=1



where @ is the global number of tha -th node from the influence domain of”,

N9 is the number of nodal points in the influence dim and %@ (x) is the
shape function associated with the naolgg, @) . The CAN node can be selected as
the nearest node to the field point

support domain of node Xx¢ L)@

Figure 3.1- Sketch of the support domain of the caN for approximation at the
point X; local subdomain around the nog8

The derivatives of the field variablei(x) can be approximated by derivatives of
approximated fields (DO-approach) [42], i.e.

NG

U1 (9= Y PG (). (3.2),
a=l

or by using modified differentiation technique (Rftproach) [41].

3.1.2 Point Interpolation Method

In this chapter, we shall explain the meshless@ppration of primary field variables
by Point Interpolation Method (PIM). The combinatiof the radial basis functions
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and polynomials leads to a sufficiently accuraté anmerically stable approximation
method. For the RBF, we have used inverse multiGuiag

2 p/2
R1(x) = Ux-x” +(c”)2J (3.3)

Without going into details [41], the approximatiohfield variable around the node

X9 can be expressed by

Nd
10=> 1343, a=n(q4 (3.4)

a=l

where @ is the global number of tha -th node from the influence domain of”,

N9 is the number of nodal points in the influence domand (2@ (x) is the
shape function associated with the nodgg, @) . The shape functions satisfy the

Kronecker 0 property. The derivatives of the field variablendze approximated by
derivatives of approximated fields (DO-approact®][4.e.

NO
k.1 09= 2 1333 ). (3.5)

a=1

or by using modified differentiation technique (Rftproach) [41].

4  Meshless analysis of plate bending problems

Plates are three dimensional structural elementssehthickness is very small as
compared with other dimensions. In the plate tleothe 3-D formulation of elastic
problem is assumed in semi-integral form acrosspthte thickness, and due to this
assumption the original problem is simplified t@-# problem. Since the late 19th
century several plate theories have been devel@pednalysis of thin and/or thick
plates. It is well known that in the Kirchhoff-Lowkeory (KLT) of bending of thin
elastic plates the shear deformations are omitteldtlze deflections can be calculated
separately from the in-plane deformations in homeges plates. Besides of KLT
there have been developed generalized shear de¢fomtheories including the first-
order shear deformation theory (FSDT)( [10],) anghbr-order shear deformation
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theory (HSDT) ( [10], [43]) which account for traresse shear strains and stresses in
contrast to KLT. Note that in the FSDT the sheainst are represented as constant
through the plate thickness and the theory requinesr correction factors to compute
transverse shear forces, while in the HSDT the zangential traction boundary
conditions are satisfied on the surfaces of théepdamd no shear correction factor is
required.

4.1 Angularly symmetric bending of circular plates

In the Kirchoff-Love theory of bending of thin péet [9] all the physical quantities are
expressed in terms of the deflectiomx) and/or its derivatives. For the plate of

thicknessb and midplane? orthogonal to the axiss, the tensor of moments can be
expressed in terms of the second order derivati¥deflection as

Eb3

0™ 4.1
12(1-1v2) @4

M; =-D| (L-v)w; +vg D%w|, D=

where D is the bending stiffnessk and v is the Young's modulus and Poisson's
ratio, respectively.

The governing equation for deflections of thin @as given as
Mijj (x)=-a(x), 4.2)
hence after substituting (4)%o (4.2) we can obtain governing equation inftiren

[D@-v)w; ], +0? [vbO?w|=g (4.3)

with q(x) being the density of transversal loading appliedhe plate surface.

If we shall consider the bending stiffness to bastant, then the governing equation
is simplified as

DO’0%w=q. (4.4)
Three basic boundary conditions can be assumeldednaundary edge:

. ow
i) clamped edge: =0; —| =0
(i) clamped edge:w|- ™

(i) simply supported edgew|- =0; M|. =0 (4.5)
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(iii) free edge: M| =0; V| =

The fourth order derivatives of deflections in gaieg equations can give rise to
serious difficulties not only in the strong formtiten for numerical solution, but also
in the weak formulation owing to inaccurate appnaxiion of high order derivatives
of deflections occurring in the integral equati@asswell as in boundary conditions.

Therefore, it is expedient to introduce the newdfieariable defined as

m(x) = -DO%w(x) for xOQ (4.6)
Then the governing equation (4.4) is split into weguations given by (4.6) and (4.7)
0%m(x) = ox) for xOQ (4.7)

and the boundary conditions can be expressed rimstéeld variables including new
one.

4.1.1 Formulations in polar coordinates

Bearing in mind the symmetry, the problem can mpsfied when we use polar
coordinate(r,¢) instead of Cartesian coordinates, where

(X, %) = (rcosg ,r sinp andd(.)/d¢p=0.

Then,
_ . ow(r) 1 ow(r) o%w(r)
W (I’) I’, ar , le (r) _?(dj —ri’ r" ) o +ri,rj arz , (48)
62
02w(r) = [ ; +——]w(r)
or
Therefore, the governing equations (4.6) and (dan)be written now as
% 19 10 ow(r)
D{F+F—Jw(r)+m(r) 0 or D?ar( 3 ]+m(r) 0 (4.9
2 19 __ 19 ( om(r)\_ _
[aT*'F—Jm(V) q(r) or Fa—r(rT) =-q(r) (4.10)



4.1.2 Numerical examples

In all numerical computations, we have used a umifdistribution of nodal points
and the radius of the sub-domaig =0.lhwith hbeing the distance between two
neighbour nodes. The other parameters in the MlfBeagimation have been taken as:
radius of the interpolation domain? =3.00h, shape function paramet@)a =h,
cubic polynomial basign=4. In the PIM(RBF+P)-approximation, we have chosen:
type of RBF — inverse multiquadrics witpp =—1, number of multiquadrics around

each noddN% =16, number of polynomialdM =7, shape parametet® =2h. As
regards the geometry, we shall consider the circgkate without any hole

Q={(r, ¢);r LO,r,], ¢J[0,27} .

The accuracy and convergence for numerical solsitioh considered b.v.p. is
presented in Figure. 4.1. It can be seen thatdhaudlation CPDE(2xPoiss) exhibits
convergent and highly accurate numerical solutions.

CPDE(2 x Poisson)-MLS  1,=0, r,;: CE LIE(biharmonic)-MLS =0, r;; CE
102 102 e
100 4 10°
9 g
£ 102 < 102
£ £
<] <)
g qg+ S 404 @ DOST .
d o/*/ 8 —=— DOS1
— 10® @ DOSO |... 2 106 exact W,
/_4 —e— DO0S1 =@ D181
10% 4 B D1S0 108 —e— D181
/jw D1S1 exact W,
10110 4 T 1010 J

0.01 0.10 1.00 0.01 0.10 1.00
h/iL hiL

Figure 4.1- Accuracy and convergence of numericdlt®ons for b.v.p. (A) by
CPDE(2xPoiss) and LIE(biharm) combined with MLS-apgmations of field
variables

From the above study of the accuracy of numericalut®ns by meshless
formulations implemented with MLS-approximations of field variables, the
following conclusions can be drawn:

(i) only the formulations for decomposed problem (CPDE(2xPoiss))yield
meaningful results the LIE(biharm) formulation fails



(i) in the CPDE(2xPoiss), good accuracy and convergencates are achieved by
using the DO-approach

(iii) the influence of S1-modification for evaluati of shape functions and their
derivatives on accuracy is negligible

The numerical results by CPDE(2xPoiss) shown irufeg. 4.2 for the b.v.p. with
clamped edge despite the fact that the accuratheifiormulation by CPDE(2xPoiss)
is determined not only by the first order derivasivbut also by the second order
derivatives. Qualitatively different results haveeh obtained by the LIE(biharm),
where the accuracy of the numerical solution obardary value problems is affected

also by the accuracy of approximations of the tbirder derivativew . (r).

CPDE(2 x Poisson)-PIM r,=0, r;; CE LIE(biharmonic)-PIM 1,=0, r,; CE
102 0% 19
16 0 DOSO 10 m -0 DOSO |,
—e— DOS1 —*— Dos1
10 - 10+ -
=@ D180 8- D180
10 —=— D151 |. 10 - D151
VA
10° 10 o e
g

107

| error norm | (%)
lerror norm| (%)

10®

10

1070

1010

101 1 \ 1071 A T
0.01 0.10 1.00 0.01 0.10 1.00
hiL hiL

Figure 4.2- Accuracy and convergence of numericdlt®ons for b.v.p. (A) by
CPDE(2xPoiss) and LIE(biharm) combined with PIM-apgmations of field
variables

Summarizing the study of the accuracy of numerisalution by meshless

formulations implemented with PIM-approximations of field variables, we

conclude:

(i) the LIE(biharm) formulation gives unreliable results (convergence is achieved
only in the b.v.p. (C))

(ii) both the LIE(2xPoiss) and CPDE(2xPoiss) formulatios give stable and highly
accurate numerical solutionsof the b.v.p. (A) and (B); in the case of b.v.g) (
the accuracy is good with excellent convergenae rat

(i) the influence of Sl1-modification for evaluam of shape functions and their
derivatives on accuracy is negligible
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Finally, we pay attention to computational effiaigrof various approaches. Since the
LIE(biharm) formulation is disqualified owing to refiable accuracy, and the

influence of the advanced evaluation of the denreat of shape functions (D1-

approach) on the accuracy is negligible, we confimedecomposed formulations

considered in the weak form (LIE) and strong fo@#®DE) with using both the MLS

and PIM approximations for field variables and DG@&valuation technique. In case of
small densities of nodes, the time for creatiorthaf discretized system matrix is a
dominant part of the whole time consumption, whilecase of large densities of
nodes, the time needed for solution of such sysitleeguations is dominant.

102
PIM

—e— LIE (2xPoiss)

~@- CPDE (2xPoiss)
MLS |

—— LIE (2xPoiss)

s |~~~ CPDE (2xPoiss)

10!

0.01 0.10 1.00

Figure 4.3 - Comparison of computational times spgrtwo decomposed
formulations implemented by both PIM- and MLS-ap{ineations

Furthermore, in the case of LIE(2xPoiss), only lisé order derivatives are required
and there is no principal difference in time conswgnfor evaluation of these
derivatives by the MLS and/or PIM approximationheijue. The evaluation of the
2nd order derivatives by the MLS approximation &stér than by the PIM
approximation. Therefore the CPDE(2xPoiss)+MLS is more efficienthan the
CPDE(2xPoiss)+PIM for low densities of nodes. On thother hand, in case of
high densities of nodes, there is practically no flerence in the efficiency of the
approaches considered in Fig. 4.3.

4.2  Static analysis of the bending of FGM square plates

In this chapter of we shall investigate the statisponse of thin and/or thick elastic
functionally graded (FG) plates. The spatial vasiatof material coefficients in the
FG composite structures is determined by distrdoutiof volume fractions of
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particular constituents. The attention is devoted derivation of the unified
formulation of governing equations in FGM platedhieh includes the Kirchhoff-
Love theory (KLT) as well as theland & order shear deformation plate theory
(SDPT).

In order to unify the formulation for all three tivees (KLT, FSDPT and TSDPT), we
assume displacement field defined by

v (%2 =3, {y)+[ A2~ ¥ Wi+ @, ()} +3; @), (4.12)
where u, (X), @,(x), w(x)are the in-plane displacements, rotations and ctédte
fields, respectively, ang(z) := z— oy/( 3 with ¢(2):= 4(2)3 /3.

Now, in view of (4.11), the strain tensor is given

Cap (X, D =£qp () +[ a3~ } Wp()+ B Wap (),

€x3(X, z)——qd(z)[ W () + 8 ()], es3(x,2=0, (4.12)

where
1 1
¢ap =5 (U s *Upa) s Nap =5 (Pap* Hpa),

in which ¢(2) =1- o' (2), ¢'(2)=4(2/ H?.

According to the Hooke's law, the 3D elastic stesda the plate structure are given as
_ E v

O—IJ (XYZ) _m[q (Xl 3+ﬁ® i& (Xv z:l

with H =1- yv, (x =2 for 3D elasticity, while y =1 for plane stress formulation)
and E, v being the Young's modulus and the Poisson's natpectively.

In view of strains (4.12), we have

Q% D= 4y 0002 Wy () + 0L By (0 (4.23)
9as 2= 5 {100+ astarlff 00 a3 e oo
%
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_E a¢¥(®
1+v 2

033(%,2) = 1E”2 Py, 00+ or- Hr w0+ gm0 @1y
%

[Wa (0)+8, ()],

0q3(X,2) =

with
rDe):=H V5, P (x):=H +vg,
3 (%)= Héqp(X) +vogpuy,  (X) . 155 (X):=Hilgp(X) +Vogpdy,,(X) ,

) 2 (X) = HW g 5.(X) + VW (X) (4.15)

Having known the transversal dependence, the pktding problem can be analyzed
as a 2D problem. Sinch <« L (where h and L are the thickness and a characteristic
width of the plate, respectively), the variatioms [ J[—h/ 2, h/ 2] can be treated by

using the average stresses and stress couples #uedhickness of the plate

h/2 h/2
Ta’g(x) = J' Jalg(X, Z)dZ,Tglg(X) = .[ 0'3’3(X,Z)d2
-h/2 -h/2
h/2 h/2
Q)= [ ¢(Doap(x, D dzMgg(x):= [ 204p(x,2dz
-h/2 -h/2
h/2
Sup() = [ w(Jagp(x, 3 d: (4.16)
-h/2

In view of the principle of the virtual work [44fhe governing equations in the semi-
integral formulation are given as

Topp =0, 4.17)
(Mag -eMag) , * ciTag o = -0, (4.18)
01( Mag 5 ‘f3a) =0 (4.19)

and the boundary conditions should obey the folhgnequations at each boundary
point
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nﬁTaﬁJLb =0, nfgl\7|a,35¢a =0, nan/;S,/; J(g—\r,]vj =0, (V —Z[[T—]])5W:0.

It is appropriate to use dimensionless formulasipacified as follows

0_ Xy o_~2 O_Ya O_ ey 0 _1 0
- z ] U - - ’ ] T T T =
X L ho o hy Po =0 ho ox, LGXE
3
Do = _Eosz (4.20)
12(1-v*)
Then, the governing equations (4.17)-(4.19) rasult
TaD,/a,/a =0, (4.21
2
(M2 -aM) o= | T, = (4.22)
aﬁclaﬁyaﬁclho 3a,a_q’ .
L 2
o M:’“_[EJ T, [=0 (4.23)

Let us consider a FGM plate, in which the coordirdgpendence of Young's modulus
is considered in the factorized form

E(x,2)= B By (X) K/ 2. (4.24)

with assuming the power-law gradation over thekifiiss of the plate

p 0
O =1 (g_ zj -EEhT2)
B/ (9=1+{ 2+—h* 4 R

where{ andp are the values of the level and exponent of theepdaw gradation,
respectively.

-1, Eg=E(FH/2) , (4.25)

Considering the above mentioned material propertig®e can obtain governing
equations as
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dg{ DIy rg(’bﬁ‘) + Dy Tg(;)ﬁ} + Az%{ D g rg(ﬁw) + Dy rgﬁ%} +

+A{ Doy 57 + DTk =0 (4.26)
(dI _Clpl){ D24 ap Tg(,;) +2D34 p TcEr(;)a + Dy TLE(,Bu,)aﬂ} +

+%(Ae - 01A10){ Dy ap Tg,gw) +2Dy B rgﬁv,v()J + Dy T(E(/?V,\Zrﬁ} +

v (A= A){ D51 g Tl + 2031 g1l + O3y 18} +

ot [ijz(ps—ozw{c%a[%v%ﬁj@(—? e | = 6

12(1-v)\ hy
(4.27)
Al{ Dty B TE(/?) + Dy Tg(;),g} + Aio%{ D3y B rg(ﬁ"‘b + Dy rgﬁ‘f‘%} +
+A9{ D3 5 Tgf) + Dy r%’}{} -
2
- H [L _ o o) _
0112(1_”[%} (As—cohy) D%( L V\?ﬁ%j 0 (4.28)

In order to decrease the order of derivatives @fifivariables within the gradients of

deformation fieldsrgl;) in governing equations (4.26)-(4.28), we introdtloee new
field variablessg, faIj andm” as
s;-0%4; =0, fJ-0%5 =0, m’-0%w'=0 (4.29)

Now, the general system of governing equations givdby PDEs with variable
coefficients involve not higher than second order etivatives of field variables

(0, 08w &, ¢, i}
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Because of the transversal gradation of Young'subusd the governing equations
(4.26)-(4.28) are not uncoupled for the deflectiomstations and in-plane
deformations in FGM plates. Thus, the in-plane deftdions are induced in such a

FGM plate even if subjected to transversal load/.oRlrthermore,T,, ='I;ﬁ, hence

the plane stress conditions are not satisfied reiththe generalized sense. In order to
investigate the influence of coupling between thefledgtions and in-plane
deformations on the bending stiffness (and so afsdhe solution of the boundary
value problem (BVP)) in the FGM plates with# 0, one should compare the results

obtained by choosing =0 and byc=1.
4.2.1 Numerical examples

Owing to strict length limitation, we confine tdustration of just one aspect of the
coupling between the bending and in-plane defoomathodes due to transversal
gradation of Youngs modulus. In presented numeiinadstigations, we consider a
square plateLxL with clamped all the edges.Poisson's ratio is rassuto be
constantV =0.3 , while various values of the exponerm) (@nd level ¢) of

transversal power-law gradation of Young’s modwdus considered. The transversal

uniform static Ioadingq* =1 is applied.

Figure 4.4 illustrates the influence of gradatidrivoung's modulus on the reduction
of deflections against the deflections of homogesguate. The results are presented
for two levels of gradation() and various combinations of thand y -factors. As

expected, the reduction of the deflection is insieg with increasing the level of
gradation. The reduction of the maximum deflecimaround 20% lower in the case
plane stress formulationy(=1) than in the casey = 2 with keeping the same value

for the c -factor. This observation is independent on theiaf thec -factor. In the
case of higher level of gradation, the differenisesveen the results corresponding to
c=0and c=1 under fixed value of they -factor are comparable with differences due

to various values of the -factor under fixed value of the -factor. Figure 4.5 shows

the in-plane variations of the in-plane displacetsgwhich were generated W — U

coupling(c=1). The influences of andy-factor are observable.
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Figure 4.4- In-plane distribution of Figure 4.5- In-plane distribution of in-
deflections in transversally graded  plane displacements in transversally
FGM plates within KLT graded FGM plates within KLT

Figures 4.6-4.7 show the dependence of the reduofionaximum value of deflection
on the parametéy (level of gradation) and the expongnbf the power-law gradation,
respectively. On Figure 4.6 we can see that thactezh of the maximum value of
deflection w.r.t. thew, =w ({ =1,y =1) is increasing with increasing the level of

gradation under keeping the volume contents of dbestituents to be constant (
p =const).Figure 4.7 shows the decreasing reduction ofntfaimum deflection
(due to the transversal gradation of Young's magjulith increasing the value of the
exponent of power-law gradation of Young's modullisis can be explained by the
fact that the volume content of the constituenthwitigher Young's modulus is
decreasing with increasing the expongnt
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level of gradation” exponent of power-law gradatign

5 Conclusions

(i) One of the main goals of this work is to give diadiderivation of the mathematical model
for bending of elastic plates within the generalitieeory of thermoelasticty.

Starting from the energy variational principle iD 8lastostatics (principle of virtual work) and
making use of certain geometrical assumptions fatepstructures, we could perform the
integration w.r.t. the transversal coordinate imsed form and deduce the governing equations
as well as the boundary conditions for 2D problamglicable to description of bending and in-
plane deformations of elastic plates subject tticstaading.The derived mathematical model
involves two key coefficients which can be used fewitching among three commonly used
theories for bending of elastic plates, such as thKirchhoff-Love theory (KLT) for
bending of thin elastic plates; the shear deformatin plate theory of the £ order (FSDPT)

and the SDPT of the & order (TSDPT).

Allowing transient dynamic loadings and replacire tprinciple of virtual work by the
Hamilton principle,we derived the mathematical model for 2D problems fovibrations of
elastic plates considered within the three theorie®KLT, FSDPT, TSDPT).

Finally, incorporating the interaction between the elastic ad thermal fields within the
theory of generalized thermoelasticity, we derivedthe mathematical model for 2D
problems describing transient behaviour of bendingmodes, in-plane deformations and
heat conduction problems in the mid-plane of the pite. Again, one can switch among
three bending modes descriptions based on the assptions used in the KLT, FSDPT and
TSDPT.
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In all the derivations, we supposed continuous vaation of material coefficients (FGM
plates) and variable plate thicknessThe variation of material coefficients in the tsaarsal
direction must be specified in order to perform ititegrations w.r.t. the transversal coordinate
in closed form. For this purpose, we assumed theeptaw gradation of material coefficients
with using two parameters for gradation, such a&slével of gradation and the exponent of
gradation. As regards the in-plane variations efrttaterial coefficients and the plate thickness,
there are no restrictions except the requiremedtffirentiability.

The transversal gradation of the Young's modulus ings a new physical phenomenon in
bending analysis of plates in all three consideretheories, namely the coupling between
the bending and in-plane deformation modes (between deflections and in-plane
displacements) even in plates subject only to ranssl loads. Consequently, the plane stress
assumptions are not justified even in generalizeass and the plane stress formulation is
questionable. The deviations between the resultshbyplane stress formulation and the
formulation without the plane stress assumption aeimeve around 20% when the Poisson's

ratioisv =0.3.

Consideration of functional gradation not only the Young's modulus but also the other
material coefficients (such as the mass density, thermal expansionicieetf, heat conduction
coefficient, specific heatbrings a wide variety of effects playing importantrole in the
behaviour of complex coupled system of physical fis.

(ii) Another of the main goals of this work is to depeda advanced numerical computational
method for solution of initial-boundary value prebis resulting from the mathematical
model for bending of elastic plates and beams

The derived governing equations are given by aesyatf the coupledorder PDE  with
variable coefficients. Thus, one could hardly exptalytical solutions. Therefore advanced
numerical computational methods are desired. In angerical method, the accuracy of
approximations of derivatives of field variables decreasing with increasing the order of
derivatives. For this purposere decomposed the formulation with high order deriatives
into the formulation for coupled fields with derivatives not higher than 2% order. The
price which should be paid for such decrease of therder of derivatives is introduction of
new field variables.

Getting rid of high order derivativegie proposed and developed the strong formulation fo
solution of complex multifield problems (with enlarged number of field variables)
represented by systems of the PDE with variable cfiigients. The strong formulation
offers the method whichis mathematically as simple as possibléelimination of any
integrations)and physically correct because of preserving the pisical nature of the
problems by recasting the physical principles into the wedi mathematical model$:or
spatial approximations of field variables, we emplged meshless approximationgsuch as
the MLS approximation and/or the Point Interpolatidethod) which simplify the pre-
processing effort (mesh generation is avoidedhd eliminate certain disadvantages of the
mesh based discretization techniques Two techniques have been developed for
approximation of higher order derivatives of fieldriables as well as two techniques for
evaluation of shape functiondhe mathematical simplification of the computationd
approach enables increasing the amount of discretdegrees of freedom(by increasing the
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amount of nodes)n order to get efficient and reliable computatioral method yielding
reasonably accurate and numerically stable results.

The proposed computational technique is quite univeal and applicable to solution of
boundary value problems for arbitrary systems cERIat can be utilized in developing and
extending the computer codes for more complex mufteld problems.

(iii) Finally, the third of the main goals of this work to test the developed computational
method and perform numerical simulations to sty multifield effects in FGM beams
and plates

The accuracy, convergence and numerical stability fothe developed computational
method have been tested in numerical examples forhich exact solutions are available
The computational efficiency has been assessedKiygt into account the accuracy and CPU
time in comparisons of various variants of the rodthe.g. two kinds of evaluation of
derivatives of field variables; two kinds of constting shape functions, ...) as well as in
comparisons with the weak formulation, where tlegration is time consuming handicap. The
particular results are discussed mainly in Chaptets 5.2 and 6.3 of the thesikhe detailed
study of coupling effects has been carried out viaumerical experiments in FGM plates
(and beamsyvith the transversal as well as in-plane gradatiorof material coefficients and
thickness of the plate(beam) Interesting conclusions have been drawn when caringethe
numerical results in Chapters 4.4, 6.3, 7.2, antl B. can be concluded that correct
treatment of functional gradation of material coeficients in mathematical models is very
important because coupling effects arise due to ntifield interactions which are missing

in plates without gradation of material coefficiens.

Hopefully, thedeveloped computer codes bring an efficient computational tool for engineers-
designers who need to identify and specify thegiteparameters of construction for an optimal
design of structures.
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