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Abstract 

This dissertation thesis aims to contribute to further understanding of phenomena by 
development of advanced meshless formulations for solution of general problems of 
continuum mechanics. Meshless computational techniques for numerical analysis of 
bending problems of beams and plates are proposed. There is presented the derivation 
of the unified formulation of governing equations for homogeneous and functionally 
graded (FG) plates, which includes the Kirchhoff-Love theory (KLT) as well as the 1st 
and 3rd order shear deformation plate theory (SDPT). Moreover, the formulation is 
extended to describe the physical processes of coupled thermoelasticity in bending 
problems of functionally graded plates. To facilitate the numerical solution of rather 
complex governing equations, we propose the strong formulation combined with 
Moving Least Square (MLS) approximation technique and/or Point Interpolation 
Method (PIM) for field variables and their derivatives with preserving the physical 
nature of problems.  

The numerical experiments presented in this dissertation thesis deal with static and 
dynamic analysis of circular and/or square plates. Homogeneous as well as 
functionally graded material (FGM) properties are considered for both the elastic and 
coupled thermoelastic problems. The weak point of conventional strong meshless 
formulations for problems involving high order derivatives is low accuracy and 
computational inefficiency due to such derivatives. This problem has been 
successfully overcome by decomposing the original problem into coupled problems 
with lower order derivatives.  

Results presented in the thesis show that, the proposed and developed meshless 
formulations exhibit excellent rate of convergence of accuracy, and acceptable 
computational efficiency. Furthermore, there is revealed lot of new phenomena and 
coupling effects due to multifield interactions appearing in FGM plates (beams).    

Keywords 

functionally graded materials; Kirchhoff-Love thin plate bending theory; 1st and 3rd 
order shear deformation plate theory; static, dynamic and thermoelastic problems; 
coupling effects; meshless approximation; strong formulation; decomposition 
technique 



 
 

Abstrakt 

Táto dizertačná práca si kladie za cieľ prispieť k hlbšiemu pochopeniu javov vývojom 
progresívnych bezprvkových formulácií pre riešenie všeobecných okrajových úloh 
mechaniky kontinua. Pre účely numerickej analýzy okrajových úloh ohybu nosníkov a 
dosiek je rozpracovaná bezprvková výpočtová metóda. V práci je prezentované 
odvodenie zjednotenej formulácie riadiacich rovníc pre okrajové úlohy dosiek s 
homogénnymi alebo funkcionálne gradovanými (FG) materiálovými vlastnosťami, 
ktoré v sebe zahŕňa klasickú teóriu ohybu tenkých dosiek (Kirchhoff-Love teória - 
KLT) ako aj šmykovo-deformačnú teóriu ohybu dosiek prvého a tretieho rádu 
(SDPT). Táto formulácia je rozšírená aj na popísanie fyzikálnych javov a procesov pri 
ohybe funkcionálne gradovaných dosiek v termoelasticite. Z dôvodov uľahčenia 
numerického riešenia pomerne zložitých riadiacich rovníc, navrhujeme silnú 
formuláciu v kombinácii s aproximačnou technikou podľa Pohyblivej metódy 
najmenších štvorcov (MLS) alebo Bodovej interpolačnej metódy  (PIM).  

Numerické experimenty uvedené v tejto dizertačnej práci sú venované statickej a 
dynamickej analýze kruhových a štvorcových dosiek. V numerických simuláciach sú 
uvažované elastické a viazané termoelastické okrajové úlohy pre dosky s 
homogénnymi, ako aj funkcionálne gradovanými materiálovými (FGM) vlastnosťami. 

Slabou stránkou konvenčnej silnej bezprvkovej formulácie pre úlohy s deriváciami 
vysokých rádov je nízka presnosť a výpočtová efektívnosť z dôvodu týchto derivácii 
poľných premenných. Tento nedostatok bol úspešne odstránený rozkladom pôvodnej 
okrajovej úlohy na systém viazaných okrajových úloh s nižšími deriváciami poľných 
premenných.  

Z výsledkov prezentovaných v tejto práci vyplýva, že navrhované a rozpracované 
bezprvkové formulácie vykazujú vynikajúcu konvergenciu presnosti a prijateľnú 
výpočtovú efektívnosť. Naviac v práci je odhalených vaicero javov a efektov 
previazanosti vznikajúcich v dôsledku interakcií polí vo funkcionálne gradovaných 
doskách a nosníkoch.  

Kľúčové slová 

funkionálne gradované materiály; klasická teória dosiek; teória šmykových deformácii 
dosiek prvého a tretieho rádu; efekty previazanosti; dekompozícia; bezprvkové 
aproximácie; termoelasticita 
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1 Introduction 

Continuum mechanics is a branch of physical sciences that deals with the deformation 
and motions of continuous material media under the influence of external effects. 
Mathematical models of the continuum mechanics are usually formulated as initial-
boundary value problems for partial differential equations being served as governing 
equations. In most cases, these equations are difficult to be solved analytically in a 
closed form, and we have to find approximation methods to the numerical solution of 
boundary value problems. The mathematical foundations of most popular 
approximation methods of solutions of the boundary value problems (BVP) in 
engineering resp. continuum mechanics were first time published by Galerkin [1] and 
Ritz [2]. 

In the 20th century with the development of high performance computers, 
simultaneously got the computer-based modelling and simulation of structures more 
and more important role in the engineering computations. During the century several 
approximation methods were developed for the solutions of BVP in engineering 
practice, for example the Finite Element Method (FEM)( [3], [4]), Finite Volume 
Method (FVM) [5], Boundary Element Method (BEM) [6], Meshless methods ( [7], 
[8]), etc. 

Plates are considered as the one of the most important components of engineering 
applications. They are widely used in civil engineering, aerospace crafts and other 
branches of advanced engineering practice. Several plate theories have been 
developed for analysis of thin and/or thick elastic plates. It is well known that in the 
Kirchhoff-Love theory (KLT) [9] of bending of thin elastic plates the shear 
deformations are omitted and the deflections can be calculated separately from the in-
plane deformations in homogeneous plates. Besides of KLT there have been 
developed generalized shear deformation theories including the first-order shear 
deformation theory (FSDT) [10] and higher-order shear deformation theory (HSDT) 
[10] which account for transverse shear strains and stresses in contrast to KLT. 
In the last decades of previous century the application of laminated composite 
structures became to the part of engineering practice.  
Besides the advantages of such structures, the main disadvantage consists in 
delamination due to discontinuities of stresses on interfaces. A great effort has been 
done to overcome this shortcoming. 
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Nowadays the modern technologies of material engineering such as functionally 
graded materials (FGM) with continuous spatial variation of properties enable us to 
replace the laminated composites by FGM [11]. 

The formulation of boundary value problems for structures with such a complex 
material properties leads to complicated governing equations described by partial 
differential equations with variable coefficients. One of the main objectives of this 
thesis is the correct formulation of such boundary value problems and their accurate 
and stable solution by meshless methods. 

1.1 Propositions of the dissertation thesis 

The aims of the thesis are: 

• Proposal and development of new meshless formulations for numerical 
solution of plate bending problems, with implementing in computer codes 

• Proposal and development of meshless formulations for coupled problems of 
continuum mechanics (e.g. thermal loading of plates) with implementing in  
computer codes. 

• Development of reliable numerical techniques for the solution of plate 
problems with including continuously variable material coefficients and/or 
other design parameters. 

• Investigation of the numerical stability, convergence and efficiency of 
proposed computational schemes. 

2 Current trends in solutions of boundary value problems in continuum 
mechanics 

The effects and processes in continuous media can be described faithfully within the 
theory of continuous media which is a phenomenological theory dealing with 
macroscopic characteristics of the media instead of a microscopic description. The 
macroscopic state in a continuous medium is characterized by classical fields obeying 
certain governing equations (or equations of motion) and constitutive relationships 
with the current state being determined by external impacts and specified initial-
boundary conditions. Thus, a typical task in continuum mechanics is to solve an 
initial-boundary value problem for some partial differential equations (PDE). The 
closed form solutions by using analytical methods are available only for simplified 
problems, while in engineering practise we need to use numerical method to get 
approximate solutions.  

To overcome the mathematical difficulties of solution of initial-boundary value 
problems in real engineering practise, various discretization methods have been 
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proposed and developed. The field variables are replaced by certain approximations 
within subdomains with reducing the infinite number of degrees of freedom into a 
finite one represented by nodal unknowns. The nodal unknowns are calculated from a 
system of algebraic equations resulting either from the collocation of the governing 
equations and the prescribed boundary conditions at certain collocation points (strong 
formulations) or by integrations over finite sub-domains in weak formulations. There 
have been developed lot of discretization techniques, like the finite strip method ( 
[12],), the finite difference methods (FDM) ( [13],), the finite element method (FEM) ( 
[14], [15], [16]),the extended finite element method (XFEM)( [17], [18]), the scaled 
boundary finite element method (SBFEM) ( [19],) and the boundary element method 
(BEM) ( [20], [21]). Although these classical discretization methods are well 
developed and they are still enriched by some new developments (see the above 
references), in the last two decades a great attention has been paid to the development 
of mesh-free formulations (see e.g.  [22] ) with using meshless approximations instead 
of element based approximations such as used in FEM and BEM. 

3 Introduction to meshless methods 

Meshless methods for solving PDE in engineering and sciences are new powerful 
alternatives to the element-based computational methods. Focusing on nodes instead 
of elements used common in the FEM and BEM, the meshless approaches have 
certain advantages [7]. 

In the last decades the meshless methods have attracted much attention due to their 
potential in omitting the need for human-labour intensive process of constructing 
geometric meshes, remeshing in evolving solutions [7]. This is very useful in 
problems with moving boundaries, like machining process simulations or penetration 
problems. Furthermore, numerical difficulties which relate to methods based on 
element use discretization, like locking and distortion of elements, when element 
becomes infinitely stiff, are eliminated. One could name also other advantages such as 
elimination of discontinuities occurring on element interfaces in element-based 
methods, elimination of numerical instabilities due to large distortion of finite 
elements, convenient applicability to modelling separable media, etc. The main 
objective of the meshless methods is to get rid off/or at least reduce the difficulty of 
meshing and remeshing the entire structure, by adding or deleting nodes in entire 
structure. 

The meshless method was first time presented by Gingold and Monaghan ( [23], [24]). 
It was the smooth particle hydrodynamics (SPH) method for modelling astrophysical 
phenomena. The development of meshless methods increased rapidly, mainly after 
publishing of Diffuse Element Method by Nayroles et al. [25]. Several so-called 
meshless method were developed, like Element Free Galerkin method (EFG) [26], 
Reproducing Kernel Particle Method (RKPM) [27], the Partition of Unity Finite 
Element Method (PUFEM) [28] and Meshless Galerkin methods using Radial Basis 
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Functions (RBF) ( [29], [30]). It should be mentioned, some review papers was 
published about the research of the above mentioned methods ( [31], [32]).  

The principal difference between these so-called meshless methods is only in the 
techniques, used for interpolating of trial function of unknown field variables. Even 
though mesh is not required in these methods for the interpolation of the trial and test 
function, the use of shadow elements (“background meshes”) is necessary for the 
integration in weak formulations considered in global sense. These methods are not 
truly meshless. 

In the recent decades, truly meshless methods were developed for linear and non-
linear boundary value problems of continuum mechanics. Historically older is the 
meshless local boundary integral equation (LBIE) method by Zhu et al. [33], which 
appeared to be a special class of the more general meshless local Petrov-Galerkin 
(MLPG) method in [34] and [35]. In truly meshless methods, the domain and/or 
boundary meshes are not required either for purpose of interpolation of field variables, 
or for integration of the governing equations in weak form. All relevant integrals can 
be easily evaluated over regularly shaped local subdomains (spheres for 3-D and 
circles for 2-D problems, in general). The MLPG method was employed for solution 
of static ( [36], [37]) and dynamic [38] fracture mechanics problems, as well as for 
solution of plate bending problems ( [39];) and for many other engineering 
applications in various fields of science. 

3.1 Approximation techniques 

The approximation (trial) function is the fundamental aspect of every numerical 
method, with discretizing the continuous media. A weight function, which plays an 
important role in the performance of the methods, is used in all varieties of meshless 
methods. The compact support of weight function gives a local character to the 
meshless methods. The meshless methods construct approximations absolutely in 
terms of nodal points, in contrast of mesh-based methods. 

3.1.1 Moving Least Squares method 

In this chapter, we explain the concept of the Central Approximation Node (CAN) 
MLS approximation proposed by Sladek et al. [40] Without going into details [41], the 

approximation of field variable ( )u x  around the central approximation node xq  can 

be expressed by 

( , )

1

ˆ( ) ( )x x

qN
a q a

a

u u φ
=

≈∑  ,   ( , )a n q a=          (3.1) 
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where a is the global number of the a -th node from the influence domain of xq , 

qN  is the number of nodal points in the influence domain, and ( , )( )xq aφ  is the 

shape function associated with the node ( , )n q a . The CAN node can be selected as 

the nearest node to the field point x . 

 

Figure 3.1- Sketch of the support domain of the CAN qx  for approximation at the 

point x ;  local subdomain around the node ax  

The derivatives of the field variable ( )u x can be approximated by derivatives of 

approximated fields (D0-approach) [42], i.e.  

( , )
, ... , ...

1

ˆ( ) ( )x x

qN
q aa

ijk l ijk l
a

u u φ
=

≈∑ .         (3.2), 

or by using modified differentiation technique (D1-approach) [41]. 

3.1.2 Point Interpolation Method 

In this chapter, we shall explain the meshless approximation of primary field variables 
by Point Interpolation Method (PIM). The combination of the radial basis functions 
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and polynomials leads to a sufficiently accurate and numerically stable approximation 
method. For the RBF, we have used inverse multiquadratics 

/22 2( ) ( )x x-x
p

n n nR c
 

= + 
 

         (3.3) 

Without going into details [41], the approximation of field variable around the node 

xq  can be expressed by 

( , )

1

( ) ( )x x

qN
a q a

a

f f ϕ
=

≈∑  ,   ( , )a n q a=          (3.4) 

where a is the global number of the a -th node from the influence domain of xq , 

qN  is the number of nodal points in the influence domain, and ( , ) ( )xq aϕ  is the 

shape function associated with the node ( , )n q a . The shape functions satisfy the 

Kronecker δ  property. The derivatives of the field variable can be approximated by 
derivatives of approximated fields (D0-approach) [42], i.e.  

( , )
, ... , ...

1

( ) ( )x x

qN
q aa

ijk l ijk l
a

f f ϕ
=

≈∑ .          (3.5) 

or by using modified differentiation technique (D1-approach) [41]. 

4 Meshless analysis of plate bending problems 

Plates are three dimensional structural elements whose thickness is very small as 
compared with other dimensions. In the plate theories the 3-D formulation of elastic 
problem is assumed in semi-integral form across the plate thickness, and due to this 
assumption the original problem is simplified to a 2-D problem. Since the late 19th 
century several plate theories have been developed for analysis of thin and/or thick 
plates. It is well known that in the Kirchhoff-Love theory (KLT) of bending of thin 
elastic plates the shear deformations are omitted and the deflections can be calculated 
separately from the in-plane deformations in homogeneous plates. Besides of KLT 
there have been developed generalized shear deformation theories including the first-
order shear deformation theory (FSDT)( [10],) and higher-order shear deformation 
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theory (HSDT) ( [10], [43]) which account for transverse shear strains and stresses in 
contrast to KLT. Note that in the FSDT the shear stains are represented as constant 
through the plate thickness and the theory requires shear correction factors to compute 
transverse shear forces, while in the HSDT the zero tangential traction boundary 
conditions are satisfied on the surfaces of the plate and no shear correction factor is 
required. 

4.1 Angularly symmetric bending of circular plates  

In the Kirchoff-Love theory of bending of thin plates [9] all the physical quantities are 
expressed in terms of the deflection ( )xw  and/or its derivatives. For the plate of 

thickness b and midplane Ω orthogonal to the axis x3, the tensor of moments can be 
expressed in terms of the second order derivatives of deflection as 

( ) 2
,1ij ij ijM D w wν νδ = − − + ∇  

,   
3

212(1 )

Eb
D

ν
=

−        

(4.1) 

where D  is the bending stiffness, E and ν is the Young's modulus and Poisson's 
ratio, respectively.  

The governing equation for deflections of thin plane is given as  

( ) ( ), x xij ijM q= − ,          (4.2) 

hence after substituting (4.11) to (4.2) we can obtain governing equation in the form 

( ) 2 2
, ,

1 ij ij
D w D w qν ν  − + ∇ ∇ =    

        (4.3) 

with ( )xq  being the density of transversal loading applied on the plate surface. 

If we shall consider the bending stiffness to be constant, then the governing equation 
is simplified as 

2 2D w q∇ ∇ = .           (4.4) 

Three basic boundary conditions can be assumed on the boundary edge Γ: 

(i) clamped edge:  0w Γ = ; 0
n
w

Γ

∂ =
∂

 

(ii) simply supported edge:  0w Γ = ; 0M Γ =                      (4.5) 
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(iii) free edge:  0M Γ = ; 0V Γ =  

The fourth order derivatives of deflections in governing equations can give rise to 
serious difficulties not only in the strong formulation for numerical solution, but also 
in the weak formulation owing to inaccurate approximation of high order derivatives 
of deflections occurring in the integral equations as well as in boundary conditions. 

Therefore, it is expedient to introduce the new field variable defined as 

2( ) : ( )x xm D w= − ∇   for  x∈Ω          (4.6) 

Then the governing equation (4.4) is split into two equations given by (4.6) and (4.7) 

2 ( ) (x x)m q∇ =   for   x∈Ω          (4.7) 

and the boundary conditions can be expressed in terms field variables including new 
one. 

4.1.1 Formulations in polar coordinates 

Bearing in mind the symmetry, the problem can be simplified when we use polar 

coordinates ( , )r ϕ  instead of Cartesian coordinates, where 

 1 2( , ) ( cos , sin )x x r rϕ ϕ=  and (.) / 0ϕ∂ ∂ ≡ . 

Then, 

, ,
( )

( )i i
w r

w r r
r

∂=
∂

,     ( )
2

, , , , , 2

1 ( ) ( )
( )ij ij i j i j

w r w r
w r r r r r

r r r
δ ∂ ∂= − +

∂ ∂
,     (4.8) 

2
2

2

1
( ) ( )w r w r

r rr

 ∂ ∂∇ = + 
 ∂∂ 

 

Therefore, the governing equations (4.6) and (4.7) can be written now as 

2

2

1
( ) ( ) 0D w r m r

r rr

 ∂ ∂+ + = 
 ∂∂ 

    or    
1 ( )

( ) 0
w r

D r m r
r r r

∂ ∂  + = ∂ ∂ 
               (4.9) 

2

2

1
( ) ( )m r q r

r rr

 ∂ ∂+ = − 
 ∂∂ 

     or     
1 ( )

( )
m r

r q r
r r r

∂ ∂  = − ∂ ∂ 
                  (4.10)  
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4.1.2 Numerical examples 

In all numerical computations, we have used a uniform distribution of nodal points 
and the radius of the sub-domain 0.1or h= with hbeing the distance between two 

neighbour nodes. The other parameters in the MLS-approximation have been taken as: 

radius of the interpolation domain 3.001ar h= , shape function parameter ac h= , 

cubic polynomial basis 4m= . In the PIM(RBF+P)-approximation, we have chosen: 
type of RBF – inverse multiquadrics with 1p = − , number of multiquadrics around 

each node 16qN = , number of polynomials 7M = , shape parameter 2ac h= . As 
regards the geometry, we shall consider the circular plate without any hole 

{ ( , ); [0, ], [0,2 ]}ar r rϕ ϕ πΩ = ∀ ∈ ∈ . 

The accuracy and convergence for numerical solutions of considered b.v.p. is 
presented in Figure. 4.1. It can be seen that the formulation CPDE(2xPoiss) exhibits 
convergent and highly accurate numerical solutions.  

              

Figure 4.1- Accuracy and convergence of numerical solutions for b.v.p. (A) by 
CPDE(2xPoiss) and LIE(biharm) combined with MLS-approximations of field 
variables 

From the above study of the accuracy of numerical solutions by meshless 
formulations implemented with MLS-approximations of field variables, the 
following conclusions can be drawn: 

(i) only the formulations for decomposed problem (CPDE(2xPoiss)) yield 
meaningful results; the LIE(biharm) formulation fails  
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 (ii) in the CPDE(2xPoiss), good accuracy  and convergence rates are achieved by 
using the D0-approach,  

(iii) the influence of S1-modification for evaluation of shape functions and their 
derivatives on accuracy is negligible 

The numerical results by CPDE(2xPoiss) shown in Figures. 4.2 for the b.v.p. with 
clamped edge despite the fact that the accuracy in the formulation by CPDE(2xPoiss) 
is determined not only by the first order derivatives but also by the second order 
derivatives. Qualitatively different results have been obtained by the LIE(biharm), 
where the accuracy of the numerical solution of a boundary value problems is affected 

also by the accuracy of approximations of the third order derivative , ( )rrrw r . 

          

Figure 4.2- Accuracy and convergence of numerical solutions for b.v.p. (A) by 
CPDE(2xPoiss) and LIE(biharm) combined with PIM-approximations of field 
variables 

Summarizing the study of the accuracy of numerical solution by meshless 
formulations implemented with PIM-approximations of field variables, we 
conclude: 

(i) the LIE(biharm) formulation gives unreliable results (convergence is achieved 
only in the b.v.p. (C) ) 

(ii) both the LIE(2xPoiss) and CPDE(2xPoiss) formulations give stable and highly 
accurate numerical solutions of the b.v.p. (A) and (B); in the case of b.v.p. (C) 
the accuracy is good with excellent convergence rate 

 (iii) the influence of S1-modification for evaluation of shape functions and their 
derivatives on accuracy is negligible 
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Finally, we pay attention to computational efficiency of various approaches. Since the 
LIE(biharm) formulation is disqualified owing to unreliable accuracy, and the 
influence of the advanced evaluation of the derivatives of shape functions (D1-
approach) on the accuracy is negligible, we confine to decomposed formulations 
considered in the weak form (LIE) and strong form (CPDE) with using both the MLS 
and PIM approximations for field variables and D0S1 evaluation technique. In case of 
small densities of nodes, the time for creation of the discretized system matrix is a 
dominant part of the whole time consumption, while in case of large densities of 
nodes, the time needed for solution of such system of equations is dominant. 

 

Figure 4.3 - Comparison of computational times spent by two decomposed 
formulations implemented by both PIM- and MLS-approximations 

Furthermore, in the case of LIE(2xPoiss), only the 1st order derivatives are required 
and there is no principal difference in time consuming for evaluation of these 
derivatives by the MLS and/or PIM approximation technique. The evaluation of the 
2nd order derivatives by the MLS approximation is faster than by the PIM 
approximation. Therefore the CPDE(2xPoiss)+MLS is more efficient than the 
CPDE(2xPoiss)+PIM for low densities of nodes. On the other hand, in case of 
high densities of nodes, there is practically no difference in the efficiency of the 
approaches considered in Fig. 4.3.  

4.2 Static analysis of the bending of FGM square plates 

In this chapter of we shall investigate the static response of thin and/or thick elastic 
functionally graded (FG) plates. The spatial variation of material coefficients in the 
FG composite structures is determined by distribution of volume fractions of 
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particular constituents. The attention is devoted to derivation of the unified 
formulation of governing equations in FGM plates, which includes the Kirchhoff-
Love theory (KLT) as well as the 1st and 3rd order shear deformation plate theory 
(SDPT). 

In order to unify the formulation for all three theories (KLT, FSDPT and TSDPT), we 
assume displacement field defined by  

[ ]{ }1 , 1 3( , ) ( ) ( ) ( ) ( ) ( ) ( )x x x x xi i iv z u c z z w c z wα α α αδ φ φ ϕ δ= + − + + ,           (4.11) 

where ( )xuα , ( )xαϕ , ( )xw are the in-plane displacements, rotations and deflection 

fields, respectively, and 2( ) : ( )z z c zφ ψ= −  with  3 2( ) : 4( ) / 3z z hψ = . 

Now, in view of (4.11), the strain tensor is given by 

[ ]1 , 1( , ) ( ) ( ) ( ) ( ) ( )x x x xe z c z z w c zαβ αβ αβ αβε φ φ η= + − + , 

1
3 ,( , ) ( ) ( ) ( )

2
x x x

c
e z z wα α αφ ϕ ′= +  ,  33( , ) 0xe z = ,                    (4.12) 

where 

( ), ,
1

2
u uαβ α β β αε = + ,   ( ), ,

1

2αβ α β β αη ϕ ϕ= + , 

in which 2( ) 1 ( )z c zφ ψ′ ′= − ,  ( )2( ) 4 /z z hψ ′ = . 

According to the Hooke's law, the 3D elastic stresses in the plate structure are given as 

( , ) ( , ) ( , )
1

x x xij ij ij kk
E

z e z e z
H

νσ δ
ν
 = + +  

 

with 1H χν= − , ( 2χ =  for 3D elasticity, while 1χ =  for plane stress formulation) 

and E , ν  being the Young's modulus and the Poisson's ratio, respectively.  

In view of strains (4.12), we have  

, , ,( , ) ( ) ( ) ( ) ( ) ( )x x x xkke z u z w zγ γ γγ γ γψ φ η= − +      (4.13) 

[ ]{ }( ) ( ) ( )
1 12

1
( , ) ( ) ( ) ( ) ( ) ( )

1
x x x xu wE

z c z c z z
H

ϕ
αβ αβ αβ αβ

νσ τ φ τ φ τ
ν

−= + − −
−
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1
3 ,

( )
( , ) ( ) ( )

1 2
x x x

c zE
z wα α α

φσ ϕ
ν

′
 = + +

,

[ ]{ }33 , 1 , 1 ,2
1

( , ) ( ) ( ) ( ) ( ) ( ) ( )
1

x x x x
E

z u c z z z w c z
H γ γ γγ γ γ

ν νσ φ φ η
ν

−= + − +
−

           (4.13) 

with 

( )
,( ) : ( ) ( )x x xu H uαβ αβ γ γαβτ ε νδ= + ,  ( )

,( ) : ( ) ( )x x xHϕ
αβ αβ γ γαβτ η νδ ϕ= + , 

( )
, ,( ) : ( ) ( )x x xw Hw wαβ αβ γγαβτ νδ= +                            (4.15) 

Having known the transversal dependence, the plate bending problem can be analyzed 

as a 2D problem. Since h L≪ (where h  and L are the thickness and a characteristic 

width of the plate, respectively), the variations on [ / 2, / 2]z h h∈ −  can be treated by 

using the average stresses and stress couples across the thickness of the plate 

/2

/2

( ) : ( , )x x
h

h

T z dzαβ αβσ
−

= ∫ ,
/2

3 3
/2

( ) : ( , )x x
h

h

T z dzβ βσ
−

= ∫   

/2

3 3
/2

( ) : ( ) ( , )x x
h

h

Q z z dzβ βψ σ
−

′= ∫ ,
/2

/2

( ) : ( , )x x
h

h

M z z dzαβ αβσ
−

= ∫ ,

/2

/2

( ) : ( ) ( , )x x
h

h

S z z dzαβ αβψ σ
−

= ∫                         (4.16) 

In view of the principle of the virtual work [44], the governing equations in the semi-
integral formulation are given as 

, 0Tαβ β = ,                       (4.17) 

( )1 1 3 ,,
c c qM M Tαβ αβ α ααβ

− + = −ɶ ɶ ,                     (4.18) 

( )1 , 3 0c M Tαβ β α− =ɶ ɶ                       (4.19) 

and the boundary conditions should obey the following equations at each boundary 
point 
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0n T uβ αβ αδ = ,      0n Mβ αβ αδϕ =ɶ , 0
n
w

n n Sα β αβ δ ∂  = ∂ 
, ( ) 0V T wδ− =∑� �ɶ� �� � . 

It is appropriate to use dimensionless formulation specified as follows 

x
x

L
α

α
∗ = ,   

0

z
z

h
∗ = ,   

0

u
u

h
α

α
∗ = ,   α αϕ ϕ∗ = , 

0

w
w

h
∗ = ,    

1

x L xα α
∗

∂ ∂=
∂ ∂

,     

3
0 0

0 2
:

12(1 )

E h
D

ν
=

−
                       (4.20) 

Then, the governing equations (4.17)-(4.19) result in  

, 0Tαβ β
∗ = ,         (4.21 

( ) * *
1 1 3 ,

2
* *

, 0
c c q

L
M M T

h α ααβ αβ αβ
− + = −

 
 
 

ɶ ɶ ,      (4.22) 

* *

, 3

2

1
0

0
L

c M T
hαβ β α−

    = 
   

ɶ ɶ        (4.23) 

Let us consider a FGM plate, in which the coordinate dependence of Young's modulus 
is considered in the factorized form 

0( , ) ( ) ( )x xH VE z E E E z∗ ∗= ,       (4.24) 

with assuming the power-law gradation over the thickness of the plate 

*

1
( ) 1

2

p

V
z

E z
h

ζ∗  = + ± 
 

,  
0

( / 2)
1

E h

E
ζ

∗±= − , 0 ( / 2)E E h∗= ∓   ,  (4.25) 

where ζ and p are the values of the level and exponent of the power-law gradation, 
respectively. 

Considering the above mentioned material properties, one can obtain governing 
equations as 
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{ } { }( ) ( ) ( ) ( )0
0 1 , 1 2 2 , 2, ,

u u w w
H H H H

h
d D D A D D

Lβ βαβ αβ β αβ αβ βτ τ τ τ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗+ + + +  

{ }( ) ( )
1 2 , 2 , 0H HA D Dϕ ϕ

β αβ αβ βτ τ∗ ∗∗ ∗+ + =       (4.26) 

( ){ }( ) ( ) ( )*
1 1 1 2 , 2 , 2, ,2u u u

H H Hd c A D D Dαβ βαβ αβ α αβ αβτ τ τ∗ ∗ ∗∗ ∗ ∗− + + +  

( ){ }( ) ( ) ( )0
6 1 10 3 , 3 , 3, ,2w w w

H H H
h

A c A D D D
L αβ βαβ αβ α αβ αβτ τ τ∗ ∗ ∗∗ ∗ ∗+ − + + +  

( ){ }( ) ( ) ( )
1 5 9 3 , 3 , 3, ,2H H Hc A A D D Dϕ ϕ ϕ

αβ βαβ αβ α αβ αβτ τ τ∗ ∗ ∗∗ ∗ ∗+ − + + +  

( )
2

0 0
1 3 2 4 1 , , 1 ,

012(1 ) 12(1 )H H
h hH L H

c A c A D w D m q
h L Lα α α α αϕ ϕ

ν ν
∗ ∗ ∗ ∗ ∗ ∗ ∗      + − + + + = −      − −     

                   (4.27) 

{ } { }( ) ( ) ( ) ( )0
1 2 , 2 10 3 , 3, ,

u u w w
H H H H

h
A D D A D D

Lβ βαβ αβ β αβ αβ βτ τ τ τ∗ ∗ ∗ ∗∗ ∗ ∗ ∗+ + + +  

{ }( ) ( )
9 3 , 3 ,H HA D Dϕ ϕ

β αβ αβ βτ τ∗ ∗∗ ∗+ + −  

( )
2

0
1 3 2 4 1 ,

0
0

12(1 ) H
hH L

c A c A D w
h L α αϕ

ν
∗ ∗ ∗   − − + =   −   

    (4.28) 

In order to decrease the order of derivatives of field variables within the gradients of 

deformation fields ( )
αβτ ∗ i  in governing equations (4.26)-(4.28), we introduce three new 

field variables sα
∗ , fα

∗  and m∗  as 

2 0s uα α
∗ ∗− ∇ =  ,   2 0fα αϕ∗ ∗− ∇ =  ,   2 0m w∗ ∗− ∇ =     (4.29) 

Now, the general system of governing equations given by PDEs with variable 
coefficients involve not higher than second order derivatives of field variables 

{ }, , , , ,u w s f mα α α αϕ∗ ∗ ∗ ∗ ∗ ∗ . 
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Because of the transversal gradation of Young's modulus, the governing equations 
(4.26)-(4.28) are not uncoupled for the deflections, rotations and in-plane 
deformations in FGM plates. Thus, the in-plane deformations are induced in such a 

FGM plate even if subjected to transversal load only. Furthermore, * *
33T Tαβ≈ , hence 

the plane stress conditions are not satisfied either in the generalized sense. In order to 
investigate the influence of coupling between the deflections and in-plane 
deformations on the bending stiffness (and so also on the solution of the boundary 
value problem (BVP)) in the FGM plates with 0ζ ≠ , one should compare the results 

obtained by choosing 0c =  and by 1c = .  

4.2.1 Numerical examples 

Owing to strict length limitation, we confine to illustration of just one aspect of the 
coupling between the bending and in-plane deformation modes due to transversal 
gradation of Youngs modulus. In presented numerical investigations, we consider a 
square plate L L×  with clamped all the edges.Poisson's ratio is assumed to be 

constant 0.3ν =  , while various values of the exponent (p) and level (ζ ) of 

transversal power-law gradation of Young’s modulus are considered. The transversal 

uniform static loading * 1q =  is applied. 

Figure 4.4 illustrates the influence of gradation of Young's modulus on the reduction 
of deflections against the deflections of homogeneous plate. The results are presented 
for two levels of gradation (ζ) and various combinations of thec and χ -factors. As 

expected, the reduction of the deflection is increasing with increasing the level of 
gradation. The reduction of the maximum deflection is around 20% lower in the case 

plane stress formulation ( 1χ = ) than in the case 2χ = with keeping the same value 

for the c -factor. This observation is independent on the value of the c -factor.  In the 

case of higher level of gradation, the differences between the results corresponding to 
c=0and c=1 under fixed value of the χ -factor are comparable with differences due 

to various values of the χ -factor under fixed value of the c -factor. Figure 4.5 shows 

the in-plane variations of the in-plane displacements, which were generated by iw u−  

coupling(c=1). The influences of ζ and χ-factor are observable. 
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Figure 4.4- In-plane distribution of  
deflections in transversally graded 
FGM plates within KLT 

 

Figure 4.5- In-plane distribution of in-
plane displacements in transversally 
graded FGM plates within KLT 

Figures 4.6-4.7 show the dependence of the reduction of maximum value of deflection 
on the parameter ζ (level of gradation) and the exponent p of the power-law gradation, 
respectively. On Figure 4.6 we can see that the reduction of the maximum value of 

deflection w.r.t. the * * ( 1, 1)refw w ζ χ= = =  is increasing with increasing the level of 

gradation under keeping the volume contents of the constituents to be constant (
constp = ).Figure 4.7 shows the decreasing reduction of the maximum deflection 

(due to the transversal gradation of Young's modulus) with increasing the value of the 
exponent of power-law gradation of Young's modulus. This can be explained by the 
fact that the volume content of the constituent with higher Young's modulus is 
decreasing with increasing the exponent p .  
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Figure 4.6 Dependence of the 
reduction of maximal deflection on the 
level of gradation ζ 

 

Figure 4.7- Dependence of the 
reduction of maximal deflection on the 
exponent of power-law gradation p 

5 Conclusions 

(i) One of the main goals of this work is to give a unified derivation of the mathematical model 
for bending of elastic plates within the generalized theory of thermoelasticty.  

Starting from the energy variational principle in 3D elastostatics (principle of virtual work) and 
making use of certain geometrical assumptions for plate structures, we could perform the 
integration w.r.t. the transversal coordinate in closed form and deduce the governing equations 
as well as the boundary conditions for 2D problems applicable to description of bending and in-
plane deformations of elastic plates subject to static loading. The derived mathematical model 
involves two key coefficients which can be used for switching among three commonly used 
theories for bending of elastic plates, such as the Kirchhoff-Love theory (KLT) for 
bending of thin elastic plates; the shear deformation plate theory of the 1st order (FSDPT) 
and the SDPT of the 3rd order (TSDPT).  

Allowing transient dynamic loadings and replacing the principle of virtual work by the 
Hamilton principle, we derived the mathematical model for 2D problems of vibrations of 
elastic plates considered within the three theories (KLT, FSDPT, TSDPT).  

Finally, incorporating the interaction between the elastic and thermal fields within the 
theory of generalized thermoelasticity, we derived the mathematical model for 2D 
problems describing transient behaviour of bending modes, in-plane deformations and 
heat conduction problems in the mid-plane of the plate. Again, one can switch among 
three bending modes descriptions based on the assumptions used in the KLT, FSDPT and 
TSDPT.  
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In all the derivations, we supposed continuous variation of material coefficients (FGM 
plates) and variable plate thickness. The variation of material coefficients in the transversal 
direction must be specified in order to perform the integrations w.r.t. the transversal coordinate 
in closed form. For this purpose, we assumed the power-law gradation of material coefficients 
with using two parameters for gradation, such as the level of gradation and the exponent of 
gradation. As regards the in-plane variations of the material coefficients and the plate thickness, 
there are no restrictions except the requirement of differentiability.  

The transversal gradation of the Young's modulus brings a new physical phenomenon in 
bending analysis of plates in all three considered theories, namely the coupling between 
the bending and in-plane deformation modes (between deflections and in-plane 
displacements) even in plates subject only to transversal loads. Consequently, the plane stress 
assumptions are not justified even in generalized sense and the plane stress formulation is 
questionable. The deviations between the results by the plane stress formulation and the 
formulation without the plane stress assumption can achieve around 20% when the Poisson's 
ratio is 0.3ν = .  

Consideration of functional gradation not only the Young's modulus but also the other 
material coefficients (such as the mass density, thermal expansion coefficient, heat conduction 
coefficient, specific heat) brings a wide variety of effects playing important role in the 
behaviour of complex coupled system of physical fields.     

(ii) Another of the main goals of this work is to develop an advanced numerical computational 
method for solution of initial-boundary value problems resulting from the mathematical 
model for bending of elastic plates and beams 

The derived governing equations are given by a system of the coupled 4th order PDE  with 
variable coefficients. Thus, one could hardly expect analytical solutions. Therefore advanced 
numerical computational methods are desired. In any numerical method, the accuracy of 
approximations of derivatives of field variables is decreasing with increasing the order of 
derivatives. For this purpose, we decomposed the formulation with high order derivatives 
into the formulation for coupled fields with derivatives not higher than 2nd order. The 
price which should be paid for such decrease of the order of derivatives is introduction of 
new field variables.   

Getting rid of high order derivatives, we proposed and developed the strong formulation for 
solution of complex multifield problems (with enlarged number of field variables) 
represented by systems of the PDE with variable coefficients. The strong formulation 
offers the method which is mathematically as simple as possible (elimination of any 
integrations) and physically correct because of preserving the physical nature of the 
problems by recasting the physical principles into the derived mathematical models. For 
spatial approximations of field variables, we employed meshless approximations (such as 
the MLS approximation and/or the Point Interpolation Method) which simplify the pre-
processing effort (mesh generation is avoided) and eliminate certain disadvantages of the 
mesh based discretization techniques. Two techniques have been developed for 
approximation of higher order derivatives of field variables as well as two techniques for 
evaluation of shape functions. The mathematical simplification of the computational 
approach enables increasing the amount of discrete degrees of freedom (by increasing the 
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amount of nodes) in order to get efficient and reliable computational method yielding 
reasonably accurate and numerically stable results.  

The proposed computational technique is quite universal and applicable to solution of 
boundary value problems for arbitrary systems of PDE what can be utilized in developing and 
extending the computer codes for more complex multifield problems.  

 (iii) Finally, the third of the main goals of this work is to test the developed computational 
method and perform numerical simulations to study the multifield effects in FGM beams 
and plates  

The accuracy, convergence and numerical stability of the developed computational 
method have been tested in numerical examples for which exact solutions are available. 
The computational efficiency has been assessed by taking into account the accuracy and CPU 
time in comparisons of various variants of the method (e.g. two kinds of evaluation of 
derivatives of field variables; two kinds of constructing shape functions, …) as well as in 
comparisons with the weak formulation, where the integration is time consuming handicap. The 
particular results are discussed mainly in Chapters 4.4, 5.2 and 6.3 of the thesis. The detailed 
study of coupling effects has been carried out via numerical experiments in FGM plates 
(and beams) with the transversal as well as in-plane gradation of material coefficients and 
thickness of the plate (beam). Interesting conclusions have been drawn when commenting the 
numerical results in Chapters 4.4, 6.3, 7.2, and 8.4. It can be concluded that correct 
treatment of functional gradation of material coefficients in mathematical models is very 
important because coupling effects arise due to multifield interactions which are missing 
in plates without gradation of material coefficients.  

Hopefully, the developed computer codes bring an efficient computational tool for engineers-
designers who need to identify and specify the design parameters of construction for an optimal 
design of structures. 
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