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1 INTRODUCTION 
 
Science is beautiful when it makes simple explanations of phenomena or connections between 

different observations. Examples include the double helix in biology and the fundamental 

equations of physics. Stephen Hawking 

 

There is no science in this world like physics. Nothing comes close to the precision with 

which physics enables you to understand the world around you. It's the laws of physics that 

allow us to say exactly what time the sun is going to rise. What time the eclipse is going to 

begin. What time the eclipse is going to end. Neil deGrasse Tyson  

 

It is wrong to think that the task of physics is to find out how Nature is. Physics concerns 

what we say about Nature. Niels Bohr 

 

Learn from yesterday, live for today, hope for tomorrow. The important thing is to not stop 

questioning. Albert Einstein 

In the beginning there was nothing, which exploded. Terry Pratchett  

 

Physics is the science from life and for life. The more you study the more you get intrigued. I 

wish the readers to become fascinated by the wonders Physics work with. The author   

 

I would like to express my deepest thanks to prof. RNDr. Ivan Baník, PhD. and assoc. prof. 

RNDr. František Čulík, PhD, who have very kindly read and reread the manuscript and 

helped me with their remarks and advices. The head of our department assoc. prof. RNDr. 

Jozefa Lukovičová PhD was supporting me with whatever was needed, many thanks for that. 

My cordial thanks belong to all my children (Pavel, Gabriela, Lucia, Jana and Ján) my 

daughter in law Beata, my grandsons Tomáš and David, my son in law Juraj and my mother 

for their understanding me being busy for such a long time. But above all, there was the help 

and the support of my husband, there are no words I could express how thankful I am. 
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2 SCALARS AND VECTORS 
 
In physics, there are quantities that are described by a single number, for example, the mass of 

a person. Such quantities are called scalars. For others we need more than one number – these 

are e.g. vectors.  A vector quantity is one that has both a magnitude and a direction. Examples 

of vectors are displacement, velocity, acceleration, force, and linear momentum. A vector may 

be represented geometrically by an arrow of length proportional to its magnitude, pointing in 

the assigned direction. For graphical representation we use Cartesian coordinate system. In 

this textbook we will use a (bold, italic) to asign a vector and a  to assign the magnitude of 

a vector. 

   

ADDING VECTORS 

 When you add scalars, five and four, for example, then there is only one answer that is 

nine. When you have two vectors and no information on their direction, but you know that the 

magnitude of one is four and the magnitude of the other is five, then the magnitude of the sum 

could be nine, if they are both in the same direction or it could be one, if they are in opposite 

directions (these are the extremes). And you have the whole range of possibilities if you do 

not know the direction. So adding vectors is more complicated. Choose any of the vectors to 

be summed and draw it as an arrow in the correct direction and of the correct length- 

remember to put an arrowhead on the end to denote its direction. Take the next vector and 

draw it as an arrow starting from the arrowhead of the first vector in the correct direction and 

of the correct length. Continue until you have drawn each vector- each time starting from the 

head of the previous vector. In this way, the vectors to be added are drawn one after the other 

tail-to-head. Therefore this is sometimes called Tail-to-head method for adding vectors (any 

number of vectors). The resultant is then the vector drawn from the tail of the first vector to 

the head of the last. Its magnitude can be determined from the length of its arrow using the 

scale. Its direction can be determined from the scale diagram, too. Another method is 

sometimes called parallelogram. In the parallelogram method for vector addition, the vectors 

are translated (i.e., moved) to a common origin and the parallelogram is constructed.  

 
E.g. cba =+  
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Fig.2.1 Tail to head method 

 
 
Fig.2.2 Parallelogram 

 
UNIT VECTORS 

 Vector quantities are often expressed in terms of unit vectors. A unit vector is a 

dimensionless vector having a magnitude of exactly 1. Unit vectors are used to specify a 

given direction and have no other physical significance. We use the symbols i, j, k  to 

represent unit vectors pointing in the positive x, y, and z directions of the Cartesian coordinate 

system and so the unit vectors i, j, k form a set of mutually perpendicular vectors. 

Unit vector of any vector is usually signed with zero index �� and so the vector a with 

magnitude a can be written in the following way: 

� � ���  

 

THE VECTOR COMPONENTS 

In two dimensions the vector components are as follows: 

�� � � cos 
,     �� � � sin 
 

� � ���, ��� � ��� � ��� 
The magnitude a of vector a:    

 � � |�| � ���� � ���     and       tan 
 � ��/ �� 

 

 

Fig.2.3 Vector components. 

In three dimensions:   � � ���, ��, ��� � ��� � ��� � ��� 

                                   � � |�| � ���� � ��� � ��� 

 

 

 

VECTOR  MULTIPLICATION  

 There are several ways of multiplying vectors. The reason for this diversity is that in 

forming the "product" of two vectors, we must take into account both their magnitudes and 

their directions. Depending on how we combine these quantities, we obtain different kinds of 

products. The two most important kinds of products are the scalar product and the vector 

product. 
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THE SCALAR PRODUCT  OF VECTORS (also called the dot product) is the scalar 

defined as 

� · � � �� cos � � ���� � ���� � ���� 

 

φ is the angle between a and b, and it is between 0° and 180°, and a, b  are the magnitudes of 

the vectors a and b.  

The scalar product of two vectors a 

� · � � �� cos 0 � �� � ��� � ��� � ��� 

Interesting is the scalar product of two unit vectors ��. 

Assigning angles between vector a and vectors i, j, k  as α, β, γ  we can write vector a and 

unit vector �� as follows: � � �!� cos 
 � � cos " �� cos #$, cos 
 , cos ", cos #   are called 

direction cosines. 

 

 

Fig.2.4 Vector components. 

�� · �� � !� cos 
 � � cos " ��cos #$ · !� cos 
 � � cos " ��cos #$
� cos� 
 � cos� " �cos� # � 1 
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 THE VECTOR PRODUCT  (also called the cross product), defined as 

 

& � � ' � � (� ' � � !�� sin �$&� 

where a and b are vectors‘ magnitudes of vectors a, b, and  � is 

angle between these vectors !� ) 180°$. The resultant of vector 

product is a vector with magnitude given in the brackets. 

The vector c is perpendicular to the plane of the vectors a and b. 

Its direction is in the direction of the unit vector &�, given by the 

right-hand rule or right-handed screw. 

 
Fig.2.5 The vector product 

 

EXAMPLE 2.1 A woman walks 250 m in the direction 30º east of north, then 175 m directly 

east. 

(a) Using graphical methods, find her final displacement 

from the starting point. 

(b) Compare the magnitude of her displacement with the 

distance she walked.  
Fig.2.6 Adding vectors 

Solution (a) Draw the first vector a with a length, to scale, of 250 m, 30º east of north and the 

second vector b with a length, to the same scale, of 175 m, due east. The order is not 

important but the tail of one vector must be at the head of the other. Now draw the resultant 

vector r, from the tail of the first to the head of the second. Use a rule to measure its length 

and use the scale to find its magnitude. Use a protractor to measure the angle it makes with 

one of the cardinal compass directions. The magnitude of the resultant is ~370 m and the 

resultant is 36º north of east. 

(b) The magnitude of her displacement is 370 m; the distance she walked is 250 m + 175 m = 

425 m. 

 

EXAMPLE 2.2 (a) What is the sum in unit-vector notation of the two vectors a = 4i + 3j and 

b = -13i + 7j? (b) What is the magnitude and direction of a + b? 

Solution  

(a) Let  r = a + b. Then. rx = ax+ bx = 4 - 13 = -9  and  ry = ay+ by= 3 + 7 = 10. 

 Thus r = -9i + 10j.  

Or        - � � � � � !4� � 3�$ � !(13� � 7�$ � (9� � 10� 
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(b) The magnitude of the resultant is  2 � �2�� � 2�� � �!(9$� + 10� = 13.45 

The angle θ  between the resultant and the positive x axis is given by: 

 tan 5 = 2�/ 2� = −10 9⁄ = −1,1.  So θ is either -48º or 132º. The first angle has a positive 

cosine and a negative sine while the second angle has a negative cosine and positive sine. 

Since the x component of the resultant is negative and the y component is positive, θ = 132º. 

Another approach: the resultant lies in the upper half-plane, so θ = 132º. 

 

EXAMPLE 2.3 A boat crossing a wide river moves with a speed of 10 km/h relative to the 

water. The water in the river has a uniform speed of 5 km/h due east relative to the Earth. 

(a) If the boat heads due north, determine the velocity and direction of the boat relative to 

an observer standing on either bank. (11.2 km/h, 26.6 ° east of north). 

(b) If the boat travels with the same speed of 10 km/h relative to the river and is to travel 

due north, what should its heading be, what will the velocity of the boat relative to an 

observer standing on either bank be? (30° west of north, 8.66 km/h). 

 

EXAMPLE 2.4   A car travels 20.0 km due north and then 35.0 km in a direction 60.0° west 

of north. Find the magnitude and direction of the car’s resultant displacement. (48.2 km, 

38.9°) 

 

EXAMPLE 2.5    Three vectors, A with angle 28° with respect to (+) x axis, B with the angle 

56° with respect to (-) x axis and C in the direction of (-) y axis. Magnitudes A= 44.0, B= 26,5 

and C= 31.0 are given in arbitrary units. Determine the sum of the three vectors. Give the 

resultant in terms of (a) components ((A+B+C)x = 24; (A+B+C)y= 11.6 ) (b) magnitude and 

angle with the x axis (26.7, 25.8°)  

 

EXAMPLE 2.6 The magnitude of a is 2 and  the magnitude of b is 8. What is the angle 

between the vectors a, b  if |� × �| = 16 ?  (90°) 

 

EXAMPLE 2.7  The magnitude of a  is 2 and  the magnitude of b is 8 and the angle between 

the vectors a and b is 90°. Determine the magnitude of � ∙ �. (0) 
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3 KINEMATICS 

 

Kinematics is the study of motion. To describe motion, we must refer it to the frame of 

reference. We often use a reference frame attached to the surface of the earth or to the room 

floor. The basic concepts involve understanding the meaning of displacement, velocity and 

acceleration. These physical quantities are vectors; however considering the motion in one 

dimension we are able to describe vector properties simply by assigning a plus or minus sign 

to them. 

Summary of key equations for motion in one dimension – linear motion. 

Average velocity:   8 = �9:�;<9:<;  

Instantaneous velocity: 8 = =�=<  

Average acceleration:  � = >9:>;<9:<;  

Instantaneous acceleration: � = =>=< = d9�=t9   

 

If   a = constant, then: 

v = v0+at 

x = x0+v0t+at2/ 2 

v2 = v0
2+2ax 

If   a = 0, then 

v = v0  (constant) 

x = x0 +vt 

For a freely falling object: 

a = -g 

v = v0 - gt 

y = y0+ v0t - gt2/ 2 

An object dropped from rest will fall  

a distance h in time t where: 

h = gt2/ 2 

 

Motion in plane or space. 

 
Fig.3.1 Motion in plane 

For motion in plane or space we must use more explicit notation to make clear the vector 

properties. We specify the position of a particle by the position vector r. As the particle 

moves, r changes. If at time t1 the position vector is r1 and velocity v1, and at time t2 it is r2 
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and v2, the displacement vector ∆r for this time interval is defined as ∆r = r2 - r1. The 

velocity vector is directed tangent to the path of the particle. The acceleration vector can be 

oriented in any direction, depending on what is happening.  

The position, velocity, and acceleration vectors for a particle moving in the x-y plane are: 

- = @� +  A� 

B = ==< 2!C$ = ==< !@� +  A�$ = =�=< � +  =�=< � = 8�� + 8�� = DE + DF 

� = ==< D!C$ = ==< �8�� +  8��� = =>G=< � +  =>H=< � = ��� +  ��� = �E + �F 

�� = =>G=< =  =9�=<9    �� = =>H=< =  =9�=<9
 

 

The magnitudes of these vectors are:  

  2 = |-| = �@� + A�         8 = |D| = �8�� + 8��       � = |�| = ���� + ��� 

 

@ − components
 

A ( components
 �� � const

 
�� � const

 8� � 8L� � ��C
 

8� � 8L� � ��C
 @ � @L�8L�C � ��C�/2

 
A � AL�8L�C � ��C�/2

 8�� � 8L�� � 2��@
 

8�� � 8L�� � 2��A
 

 

Projectile motion: 

  

�� � 0 

8� � 8L cos 5 � const 

@ � 8�C � 8LC cos 5 

 

�� � (N 
8� � 8L sin 5 ( NC 

y � P 8�dC � 

� 8LC sin θ ( NC�/2 
 

Fig. 3.2 Projectile motion 

 
The position vector r of a projectile consists of two parts. The vector v0t would be the 

displacement of the projectile if gravity was absent, and the vector gt2/2 is its vertical 

displacement due to its downward gravitational acceleration. So we can see that projectile 

motion is the superposition of two motions:  (1) constant-velocity motion v0t in the direction 

of the elevation angle θ and (2) free-fall motion gt2/2 in the vertical direction. 
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Circular motion - a point rotating in a plane about an axis perpendicular to this plane. Let us 

place the coordinate system beginning into the center of rotation. We describe the position of 

the point by the position vector r with magnitude r and angle θ. The point moves with 

peripheral speed 8 = 2π2/S (T is period) and angular speed T = d5 dC⁄ = 8 2⁄  (in radians 

per second), and – by non-uniform circular motion – with angular acceleration 
 = dT dC⁄ . 

The component of the acceleration vector a  that is parallel or antiparallel to v (that is, along 

the line tangent to the path) is called the tangential acceleration at. A more descriptive name 

is “speeding up or slowing down acceleration”. This is the kind of acceleration that measures 

changes in speed. The other component of acceleration, always perpendicular to at, is called 

normal or radial acceleration ar. This radial acceleration ar  has magnitude 

�U = 8� 2⁄ = T8 = T�2 

An object undergoing uniform circular motion is moving with a constant speed. Nonetheless, 

it is accelerating due to its change in direction. The direction of the acceleration is inwards.  

 
Fig.3.3Acceleration 

components of circular 

motion 

T = �VW = 2πf,       8 = 2π2/S = T2 

 �U = 8� 2⁄ = T8 = T�2 
 �Y = d8 dC =⁄ d!T2$ dC =⁄ 2
 
 � = �Z + �[ � = |�| = ��Y� + �U� = 2�
� + T\ 

If    
 = const: T = TL + 
C 

5 = 5L + TLC + 
 C�
2  T� = TL� + 2
C 

 

Note the parallels between linear and circular motion equations.     
 
EXAMPLE 3.1 An unidentified naval vessel is tracked by the Navistar Global Positioning 

System. With respect to a coordinate origin (0, 0) fixed at a lighthouse beacon, the position P 

of the vessel is found to be x1 =2.0 km east, yl = 1.6 km north at t1 = 0.30 h and x2 = 6.4 km 

west, y2 = 6.5 km north at t2 = 0.60 h. Using west-east as the x axis and south-north as the у 

axis, determine the average velocity in terms of its components. What are the direction and 

magnitude of the average velocity in kilometers per hour? 

Solution  

      D = ]^:]_<9:<; = !:`.\�a`.b�$:!�.L�ac.`�$L.`:L.d = !:e.\�a\.f�$L.d km/h   

8 = |D| = �!−8.4$^ + 4.9^ 0.3 = 9.72 0.3⁄ = 32.4 km/hi      

 5 = tan:c�8� 8�⁄ � = tan:c!4.9 !−8.4$⁄ $ = −30.3°           30.3° N of W                  
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EXAMPLE 3.2 A motorcycle accelerates quickly from rest, with an acceleration that has an 

initial value a0 = 4.0 m/s2 at t = 0 and decreases to zero during the interval 0 ≤ t ≤5.0 s 

according to  � = �L!1 − C/5 s$. After t = 5.0 s, the motorcycle maintains a constant 

velocity. What is this final velocity? In the process of "getting up to speed," how far does the 

motorcycle travel? 

Solution  

The acceleration a is given as an explicit function of time. Since the motorcycle accelerates 

from rest, the initial velocity is v0 = 0, so v as a function of t is: 









−=








−=









−=







 −+=+= ∫ ∫∫∫ s

t
ta

s

t
tatdt

s
dtadt

s

t
aadtvv

tt ttt

10100,5

1

0,5
10

2

0

0

2

0

0 0

0

0

0

0

0  

At t = 5.0 s, this velocity reaches its final value of 10 m/s. 

To obtain the distance traveled during the acceleration, we must solve 









−=








−=








−=








−==− ∫∫ ∫ s

tt
a

s

tt
adt

s

t
tadt

s

t
tavdtxx

ttt t

3023021010

32

0

0

32

0

0

2

0

2

0 0

00  

 

Fig. 3.4 Time dependence of a, v and x 

 

Evaluating this expression at t = 5.0 s, we find  x - x0 = 33 m. 

 

EXAMPLE 3.3 While standing in an elevator, you see a screw fall from the ceiling. The 

ceiling is 3 m above the floor. (a) If the elevator is moving upward with a constant speed of 

2.2 m/s, how long does it take for the screw to hit the floor? (b) How long is the screw in the 

air if the elevator starts from rest when the screw falls, and moves upward with a constant 

acceleration of ae = 4.0 m/s2?       

time dependence of a, v and x 

0

5

10

15

20

25

30

35

0 1 2 3 4 5t  in s
a=4(1 - t/5)

v=4(t - t2/10)

x=4(t2/2 - t3 /30) 
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Solution      

a) The position functions for the elevator floor is xf and for screw xs. Let us choose the origin 

to be the initial position of the floor, and designate upward as the positive direction. 

2
00 2

1
tatvxx ffff +=−    2

00 2

1
tatvxx ssss +=−  

Initial conditions and the accelerations 

x0f = 0 m, v0f = 2, 2 m/s, af = 0 m/s2   x0s = h = 3m, v0s = 2, 2 m/s, as = -g 

Substituting these values into the position functions we get: 

xf = (2.2 m/s)t     xs= h+(2.2 m/s)t - (1/2)gt2 

Set xf = xs and solving for t gives:   C = j�kl = j �∙d mf.ecm∙no9 = 0.78 s    

b) The elevator floor moves upward from rest with constant acceleration. The initial 

conditions are then: 

x0f = 0, v0f = 0 m/s, af = 4,0m/s2  x0s =  h = 3 m, v0s = 0 m/s, af = -g 

Using the initial conditions to write the position functions for this case: 

( ) 22/1 tax ff =     ( ) 22/1 gthxs −=  

Now substituting the values and setting  xf = xs  we get the value of t 

C = j �klapq = 0.66  
Remark: The time in the air is independent of the speed of the elevator, as long as the elevator 

does not accelerate. If the elevator has acceleration af you and the screw experience an 

"perceived gravity" with acceleration g′ = g + af. For the case in which the elevator 

accelerates downward with af = −g, the time of fall becomes infinite and the screw appears 

weightless. 

 

EXAMPLE 3.4 A ball is thrown straight up. Show that it spends as much time rising as it 

does falling back to its starting point. 

Solution  

At the peak of its flight v = 0. Thus v = v0 - gt1 = 0.  

Rise time is t1=v0/g 

Elevation is given by   у = vot - 1/2 gt2  assuming  y0 = 0.  

When the ball returns to its starting point, у = 0.  

Thus  у = 0 = v0t — 1/2 gt2, or  

t = 2vo/g = 2t1. The total time in the air is twice the rise time, so fall time = rise time. 

( ) ( ) 22 g1/2-h2/1 tta f =
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EXAMPLE 3.5 A ball is thrown upward with speed 12 m/s from the top of a building. How 

much later must a second ball be dropped from the same starting point if it is to hit the ground 

at the same time as the first ball? The initial position is 24 m above the ground. 

Solution  

The time for the first ball to reach the ground is t1, у = y0 + vot – (1/2) gt2. Let у = 0 at starting 

point, so   у = -h = -24 m at the ground.  

v0 =12m/s  

-24 = 0 + 12t –(1/2)(9.8) t2   4.9t2 – 12t - 24 = 0   t = 3.75 s or -1.30 s  

The ball was thrown at t = 0, so it hits the ground at a later time, at t = 3.75 s. 

The ball dropped from rest will require time t2 to reach the ground, where  

( ) 22/1 gth =  21.2/2 =±= ght  

Thus the second ball should be dropped a time ∆t later, where ∆t= 3.75 s – 2.21 s = 1.54 s  

 

EXAMPLE 3.6 A football is kicked at an angle θ =37.0° with a velocity of 20.0 m/s. 

Calculate (a) the maximum height, (b) the time of travel before the football hits the ground, 

(c) how far away it hits the ground, (d) the velocity vector at the maximum height, and (e) the 

acceleration vector at maximum height.  

Solution  

Assume the ball leaves the foot at ground level, and ignore air resistance and rotation of the 

ball. We decompose the initial velocity into its components  

v0x = v0 cos 37.0° = (20.0m/s)(0.799) = 15.98 m/s 

v0y = v0 sin 37.0º = (20.0 m/s)(0.602) = 12.04 m/s. 

(a) We consider a time interval that begins just after the football loses contact with the foot 

until it reaches its maximum height. During this time interval, the acceleration is g downward. 

At the maximum height, the velocity is horizontal, so vy = 0: and this occurs at a time given 

by  vy = vy0 – gt  with  vy = 0.  So we get 

t = vy0 /g ≈ 1.227 s. 

Using the calculated time we get maximum height  

y = v0yt – 1/2gt2 = 7.35m. 

(b) To find the time it takes for the ball to return to the ground, we consider a different time 

interval, starting at the moment the ball leaves the foot (t = 0, y0 = 0) and ending just before 

the ball touches the ground (y = 0 again). In following equation we set y0=0 and also y = 0 

(ground level): 
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 y = y0 + vy0 t - ½ g t2 

 0 = 0 + 12.0 t - ½ 9.8 t2 

 

There are two solutions, t = 0 (which corresponds to the initial point, y0), and 

    C = �∙c� m∙no;
f.e m∙no9 ≈2.45 s 

which is the total travel time of the football. 

We can see that the time for the whole trip is double the time to reach the highest point. It 

means the time upwards is the same as the time downwards but only without the air 

resistance.  

(c) The total distance traveled in the x direction equals: 

x = v0xt   = (16.0m/s) (2.45s) = 39.2 m. 

(d) At the highest point, there is no vertical component to the velocity. There is only the 

horizontal component (which remains constant throughout the flight), so v = v0x = v0 cos 37.0° 

= 16.0 m/s. 

(e) The acceleration vector is the same at the highest point as it is throughout the flight, which 

is 9.80 m/s2 downward. In this example we consider the football as if it were a particle, 

ignoring its rotation. We also neglected air resistance, which is considerable on a rotating 

football, so our results are not very accurate. 

 

EXAMPLE 3.7 Imagine we are sitting upright in a cabriolet which is moving at constant 

speed. Then we throw a ball straight upward (from our own point of view), while the car 

continues to travel forward at constant speed. If air resistance is neglected, will the ball land 

(a) behind the car, (b) in the car, or (c) in front of the car? 

Solution 

We throw the ball straight up from our own reference frame with initial velocity vy0. But when 

viewed by someone on the ground, the ball also has an initial horizontal component of 

velocity equal to the speed of the car vx0. Thus, to a person on the ground, the ball will follow 

the path of a projectile. The ball experiences no horizontal acceleration, so vx0 will stay 

constant and equal to the speed of the car. As the ball follows its arc, the car will be directly 

under the ball all the time because they have the same horizontal velocity. When the ball falls 

down, it will drop right into our hands.  

 



 20

EXAMPLE 3.8 A military jet fighter plane flying at 180 m/s pulls out of a vertical dive by 

turning upward along a circular path of radius 860 m. What is the acceleration of the plane? 

Express the acceleration as a multiple of g. 

Solution   

a = 
r

v2

= 
m

sm

860

)/180( 2

= 37.7 m/s2 = 37.7 m/s2 / g m/s2 = 3.8 g 

 

EXAMPLE 3.9 A ball tied to the end of a string 0.50 m in length rotates in a vertical circle 

under the influence of gravity. When the string makes an angle θ = 20° with the vertical, the 

ball has a speed of 1.5 m/s.  

(a) Find the magnitude of the radial component of acceleration at this instant. 

Solution 

�U = 8�
2 = !1.5 m/s$�

0.5 m = 4.5 ms:� 

(b) What is the magnitude of the tangential acceleration when θ = 20°? 

Solution 

When the ball is at an angle θ to the vertical, it has a tangential acceleration of magnitude 

N sin 5 (the component of g tangent to the circle). Therefore, at θ = 20°, 

�Y = N sin 20° = 3.4 ms:�  
    (c) Find the magnitude and direction of the total acceleration at θ = 20°. 

Solution  

Because a = ar + at , the magnitude of a at θ =20° is 

� = ��U� + �Y� = �4.5� + 3.4� = 5.6 ms:� 

If ∅ is the angle between a and the string, then      

∅ = tan:c s�Y�Ut = tan:c s3.44.5t = 37° 
Note that a, at, and ar all change in direction and magnitude as the ball rotates through the 

circle. When the ball is at its lowest elevation (θ = 0), at = 0 because there is no tangential 

component of g at this angle; also, ar is a maximum because v is a maximum. If the ball has 

enough speed to reach its highest position (θ = 180°), then at is again zero but ar is a 

minimum because v is now a minimum. Finally, in the two horizontal positions (θ = 90° and 

270°), at = g and ar has a value between its minimum and maximum values.  
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EXAMPLE 3.10 

 

Fig. 3.5 Graph: distance as a function of time 

 

 

Fig. 3.6 Graph: velocity as a function of time (to 

be done by the reader) 

 

Describe in words the motion of the object from 0 to 6.0 s. 

What is the instantaneous velocity of the object at the following times: t = 1 s, t = 3 s? 

What is the simple average of these two velocities? 

What is the velocity for the entire interval? 

Why are these two values different? Which is correct? 

Graphically represent the relationship between velocity and time for the object described 

above.  

From your velocity versus time graph determine the total displacement of the object. 

 

EXAMPLE 3.11 

The graph below represents the motion of a moving object. 

Where on the graph above is the object moving most slowly? (How do you know?) 

Where on the graph above is the object speeding up? (How do you know?) 

Where on the graph above is the object slowing down? (How do you know?) 

Where on the graph above is the object changing direction? (How do you know?)   

 

 

Fig. 3.7 Graph representing path of the motion  
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EXAMPLE 3.12 Worksheet – free particle model – constant acceleration 

The problem v vs t graph Solution 

1. A poorly tuned Yugo can 

accelerate from rest to a speed of 

28 m/s in 20 s. a) What is the 

average acceleration of the car?  

b) What distance does it travel in 

this time?  

 

2. At t = 0 a car has aspeed of 30 

m/s. After 6 s, its speed is 15 m/s. 

What is its average acceleration 

during this time interval? 

 

 

3. A bear spies some Honey and 

takes off from rest, accelerating  

at a rate of 2.0 m/s2. If the honey 

is 10 m away, how fast will his 

snout be going at the moment of 

ecstasy?  

 

4. A bus moving at 20 m/s (t = 0) 

slows at a rate of 4 m/s each 

second. a) How long does it take  

the bus to stop? b) How far does it  

travel while braking? 

 

 

5. A car whose initial speed is 30 

m/s slows uniformly to 10 m/s in 

5 seconds. a) Determine the  

acceleration of the car.  

b) Determine the distance it 

travels in the 3rd second.  

 

0

t (s)

(+)

(-)

0

t (s)

(+)

(-)

0

t (s)

(+)

(-)

0

t (s)

(+)

(-)
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6. A dog runs down his driveway 

with an initial speed of 5 m/s-for 

8 s, then uniformly increases his 

speed to 10 m/s in 5 s.  

a) What was his acceleration 

during the 2nd part of the motion?  

B) How long is the driveway? 

 

 

7. A physics student skies down a 

slope accelerating at a constant 

2.0 m/s2. If it takes her 15 s to 

reach the bottom, what is the 

length of the slope 
 

 

8. A mountain goat starts a rock-

slide and the rocks crash down the 

slope 100 m. If the rocks reach 

the bottom in 5 s, what is  

its acceleration? 

 

 

Fig. 3.8 Free particle worksheet 

 

EXAMPLE 3.13 The track of a cosmic ray particle in a photographic emulsion is found 

empirically to be described by the expression r = (3t2 – 6t)i + (5 – 8t4)j . Determine the 

velocity and acceleration. (v = (6t – 6) i + (– 32t3) j, a = 6i + (– 96t2) j) 

 

EXAMPLE 3.14 A motorist drives 120 km at 100 km/h and 20 km at 30 km/h. What is his 

average speed for the trip? (75 km/h) 

 

EXAMPLE 3.15 A motorist drives half an hour at 100 km/h and two hours at 80 km/h. What 

is his average speed for the trip? (84 km/h) 

 

EXAMPLE 3.16 A cheetah is the fastest land mammal and it can run at speeds of about 101 

km/h for a period of perhaps 20 s. The next fastest land animal is an antelope, which can run 

at about 88 km/h for a much longer time. Suppose a cheetah is chasing an antelope, and both 

0

t (s)

(+)

(-)

v
 (

m
/s

)
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are running at top speed, (a) If the antelope has a 40 m head start, how long will it take the 

cheetah to catch him, and how far will the cheetah travel in this time? (b) What is the 

maximum head start the antelope can have if the cheetah is to catch him within 20 s (at which 

time the cheetah runs out of breath)?  ((a) 6.9 s, 311.2 m, (b) 116 m) 

 

EXAMPLE 3.17 A typical jet fighter plane launched from an aircraft carrier reaches a take-

off speed of 280 km/h in a launch distance of 95 m. (a) Assuming constant acceleration, 

calculate the acceleration in meters per second, (b) How long does it take to launch the 

fighter? ((a) 32.3 m/s2), (b) 2.4 s) 

 

EXAMPLE 3.18 A motorist traveling 31 m/s passes a stationary motorcycle police officer. 

2.5 s after the motorist passes, the police officer starts to move and accelerates in pursuit of 

the speeding motorist. The motorcycle has constant acceleration of 3.6 m/s2. (a) How fast will 

the police officer be traveling when he overtakes the car? Draw curves of x versus t for both 

the motorcycle and the car, taking t = 0 at the moment the car passes the stationary police 

officer, (b) Suppose that for reasons of safety the policeman does not exceed a maximum 

speed of 45 m/s. How long will it then take him to overtake the car, and how far will he have 

traveled? ((a) 83 m/s, (b) 25.6 s, 872 m) 

 

EXAMPLE 3.19 Suppose that motion studies of a runner show that the maximum speed he 

can maintain for a period of about 10 s is 12 m/s. If in a 100-m dash this runner accelerates 

with constant acceleration until he reaches this maximum speed and then maintains this speed 

for the rest of the race, what acceleration will he require if his total time is 11 s? (2.25 m/s2) 

 

EXAMPLE 3.20 A typical jet liner lands at a speed of 100 m/s. While braking, it has an 

acceleration of -5.2 m/s2. (a) How long does it take to come to a stop? (b) What is the 

minimum length of the landing strip under these conditions? ((a) 19.2 s, (b) 962 m) 

 

EXAMPLE 3.21 On a 40 km bike ride a cyclist rides the first 20 km at 20 km/h. What speed 

is required for the final 20 km if the average speed for the trip is to be (a) 10 km/h? (b) 30 

km/h? ((a) 6.7 km/h, (b) 60 km/h) 
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4 DYNAMICS 

Dynamics studies how forces influence motion. Dynamics is involved in understanding a 

wide range of phenomena. The basic ideas needed are stated as Newton’s laws of motion. 

Newton’s first law: If the net external force F = 0, then a = 0 and v = constant 

The tendency of an object to maintain its state of rest or of uniform motion in a straight line is 

called inertia. As a result, Newton's first law is often called the law of inertia. Newton's first 

law makes no distinction between an object at rest and an object moving with constant 

velocity. Whether an object is at rest or is moving with constant velocity depends on the 

reference frame in which the object is observed. A reference frame in which the law of inertia 

holds exactly is called an inertial reference frame and any reference frame moving with 

constant velocity relative to an inertial reference frame is also an inertial reference frame. 

Newton’s second law: F =  ma 

Newton’s third law:  If A exerts force FAB on B and B exerts force FBA on A,  

then FAB = - FBA 

Equilibrium:   If F = 0, then a = 0, and we can write Fx= 0, Fy = 0, Fz = 0  

 

EXAMPLE 4.1 Calculate the sum of two force vectors acting on the small boat in Fig. 4.1. 

          

Fig. 4.1 The sum of two force vectors  Fig. 4.2 Decomposing of vectors 

Solution  

After decomposing these two vectors (Fig. 4.2) we can express the components of F1 and F2, 

as follows: 

αcos11 FF x =   αsin11 FF y =           βcos22 FF x =    βsin22 FF y =   

where F1, F2 are the magnitudes of the vectors F1, F2, respectively. As the angle β has a 

negative sign, the component F2y is negative and it points along the negative y axis. 

Components of the resultant force are given as the sum of the components of the forces F1 and 

F2 

α

β

F1

F2
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xxxR FFF 21 += ,   yyyR FFF 21 +=  

To find the magnitude of the resultant force, we use the Pythagorean theorem, so 

22
yRxRR FFF +=  

and for the angle φ which the force FR makes with the x axis we use 
xR

yR

F

F
=ϕtan  

 

EXAMPLE 4.2 Calculate the constant force acting horizontally required to accelerate the 

20 kg box of chocolate from rest to 0.5 m/s in 2 s (friction is negligible). 

Solution  

There are three forces acting on the box. The forward pushing force Fp exerted by the person, 

the downward force of gravity Fg and the upward force FN exerted by the floor (which is the 

reaction to the force of the cart pushing down on the floor). The sum of both vertical forces Fg 

and FN must be zero; if it did not the box would accelerate vertically.  

So  FN = Fg = m g = 196 N  

Then the net force on the box is simply Fp 

To calculate how large Fp must be, we first calculate the acceleration required: 

2m/s25.0
2

5.0 ===
t

v
a . 

So, the magnitude of the force exerted by the person must be N525.020 =⋅== maFp  

 

EXAMPLE 4.3 A box of chocolate mass m is being pulled by a person along the surface of a 

table with a force Fp. The force is applied at an angle α. The friction is assumed to be 

neglected. Calculate  

a) the acceleration of the box,  

b) the magnitude of the upward force FN exerted by the table on the box. 

Solution 

We decompose all forces into components 

Fp = (Fp cos α, Fp sin α) Fg = (0, -mg)        FN = (0, FN) 

In the horizontal x direction, FN and Fg have zero 

components, thus Fpx = m ax. So: 

 �� =  uvGw =  uv xyn zw  

 

Fig.4.3 Free body diagram 

 

In the vertical direction we have:  m ay = FNy + Fpy + Fgy. 
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We know ay = 0 since the box does not move vertically. Then: 

!{|� = {| ,  {l� = −}N,  {~� =  {~ sin 
$            0 = {| +  {~ sin 
 − }N 

And    {| = }N −  {~ sin 
   

Notice that FN is less than Fg. The ground does not push against the full weight of the box 

since part of the pull force exerted by the person is in the upward direction. 

 

EXAMPLE 4.4 Two boxes connected by a lightweight cord are resting on a table. The boxes 

have masses m1 and m2. A horizontal force of Fp is applied to the right box as shown in 

Fig.4.4 (friction is neglected). Find: 

a ) the acceleration of boxes,  

b) the tension T in the cord. 

 
Fig.4.4 Force applied to two boxes 

 
 

Fig. 4.5 Free body diagram 

Solution  

We draw the force diagram for each of the boxes. We can neglect the cord mass relative to the 

mass of the boxes. The force Fp acts on the box m1; box m1 exerts a force T on the connecting 

cord and the cord exerts a force -T back on box m1 (the third law of motion). Because the cord 

is considered to be massless, the tension at each end is the same. So the cord exerts a force T 

on the box m2. The acceleration of both boxes is the same. For the horizontal motion we have: 

For box m1: m1 a = Fp – T,  for box m2: m2 a = T 

Hence   m2 a = Fp - m1 a � =  uvw;aw9 

For the tension T we have  T = m2 a, or  T = Fp - m1 a. 

 

EXAMPLE 4.5 Suppose the cord in previous problem is a heavy rope of mass m. Calculate 

the acceleration of each box and the tension in the rope.  

Solution  

 

 

Fig.4.6 Free body diagram 

m1 m2 FP
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Since the cord has mass m, the product ma will not be zero, so the forces (tensions) at either 

end will not be the same. Therefore  T1 – T2 = m a. 

For box m1 we have:  Fp – T1 = m1 a,  for box m2:  T2 = m2 a  

We now have obtained three unknowns T1 , T2 and a in three equations. The sum of all three 

equations yields: � = {~/!} � }c � }�$.   

Then  S� � }�� � {~ w9
waw;aw9   and   Sc � {~ ( }c� � {~ waw9

waw;aw9 

 

EXAMPLE 4.6   Suppose two different boxes (m2 > m1 ) are placed with the cord joining 

them hanging over a frictionless massless pulley as in figure bellow. We assume the cord is 

massless. Calculate the acceleration of boxes and the tension in the cord. 

Solution 

 
 

Fig. 4.7 Free body diagram 

Since the cord is massless the tension T is the same at both ends. As m2 is heavier, it 

accelerates downward and box m1 accelerates upward. 

To find its value we write the second law of motion for each box, taking the upward direction 

as positive  T - m1 g = m1 a,   T – m2 g = -m2 a  

 

Solving these two equations we get � � w9:w;
w9aw; N  

The tension T we can get from either of the two equations above  

T = (g + a) m1     T = (g - a) m2 

 

EXAMPLE 4.7 Here is a famous classic problem that will make you think. A rope is passed 

over a pulley suspended from a tree branch, and a stalk of bananas is tied to one end. A 

monkey hangs from the other end of the rope, and the mass of the bananas and the monkey 

are balanced. Now the monkey starts climbing up the rope. What will happen to the bananas? 

Will they stay in the same place, or will they move up away from the ground, or will they 

move down toward the ground? 
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Solution 

Look at the force diagram for the monkey. His weight mg acts downward, and the rope 

tension T acts upward. If the monkey is to start moving up from rest, he must accelerate 

upward, which means there must be net upward force acting on him. The net upward force on 

the monkey is T - mg. But the tension is the same everywhere in a rope, so the tension at the 

end of the rope attached to the bananas is also T, greater than mg. Thus the bananas 

experience the same upward force as does the monkey, and so the bananas will move up with 

the same acceleration and velocity as the monkey. Both will move higher from the ground at 

the same rate. The net upward force on the system made up of the bananas plus the monkey is 

provided by the pulley. 

 

EXAMPLE 4.8 A person whose weight is 600 N stands on a bathroom scale in an elevator. 

What will the scale read when the elevator is (a) moving up or down at constant speed? (b) 

Accelerating up with acceleration 0.5 g? (c) Accelerating downward with acceleration 0.5 g? 

(d) Accelerating downward with acceleration g? 

Solution 

The force diagram includes two forces: the gravity force G = mg = 600 N downward and the 

normal force N, exerted upward by the surface of the scale. This normal force is the scale 

reading. 

(a) Constant velocity means a = 0, so equilibrium and  N = G  

(b) N - G = ma = +0.5 mg = 0.5 G, so  N = G + 0.5 G = 1.5 G 

(c) N - G = ma = -0.5 mg = -0.5 G,  so N = G - 0.5 G = 0.5 G 

(d) N - G = ma = -mg = -G, so   N = 0 

The last case, when the scale reading is zero, represents what is called "effective 

weightlessness". The elevator is falling with acceleration -g, as is the person. Thus the person 

does not press down on the elevator. He is seemingly "weightless". This is the situation with 

the astronauts in an orbiting space vehicle. The vehicle and everything in it are falling freely, 

and hence they all seem weightless. You have probably seen pictures where the astronauts, 

their pencils, and their sandwiches and other loose equipment float weightlessly around the 

spaceship 

 

EXAMPLE 4.9 A small object of mass m is suspended from a string of length L. The object 

revolves with constant speed v in a horizontal circle of radius r (because the string sweeps out 

due surface of a cone, the system is known as a conical pendulum). Find an expression for v. 
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Solution 

 

 

 

Fig. 4.8 Conical pendulum 

Let 5 be the angle between string and vertical. The force T exerted by the string is resolved 

into a vertical component S · cos 5 and a horizontal component S · sin 5. Since the object 

does not accelerate in the vertical direction,∑ {� � }�� � 0, and the upward vertical 

component of T must balance the downward force of gravity. So,  

(1) S · cos 5 � }N.  

Since the radial acceleration is S · sin 5, the 

Newton’s second law yields: 

(2)  ∑ {� � S · sin 5 � }�� � }8�/2.  

Dividing (2) by (1) we eliminate T: 

tan 5 � 8�/!2N$       or        8 � �2N tan 5 

Since  2 � � · sin 5,   

8 � ��N sin 5 tan 5. 

Note, the speed is independent of the mass of the object! 

 

EXAMPLE 4.10 A girl moves her brother on a sled at a constant velocity by exerting a force 

F. The coefficient of friction between the sled and the ground is 0.05. The sled and rider have 

a mass of 20 kg. What force is required if (a) she pushes on the sled at an angle of 30° below 

horizontal? (b) She pulls the sled at an angle of 30° above horizontal?  

Solution  

      

Fig. 4.9 Free body diagram: a) pushing  b) pulling 

 

a) N = m g + F sin 30°  Ff = µ N = F cos 30°  so 

mg

N

Ff F
30°

F cos30°

F sin30°
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 µ (mg + F sin 30°) = F cos 30° 

N
gm

F 7.11
30sin05.030cos

sm8.9kg2005.0

30sin30cos

2

=
°⋅−°

⋅⋅⋅=
°−°

=
−

µ
µ

  

b) N + F sin 30° = m g  Ff = µ N = F cos 30°  so 

 µ (mg - F sin 30°) = F cos 30° 

N
smkggm

F 0.11
30sin05.030cos

8.92005.0

30sin30cos

2

=
°⋅+°

⋅⋅⋅=
°+°

=
−

µ
µ

  

The force required in (b) is less than for (a) because in (b) the force F angles up and supports 

some of the weight. This reduces N and hence Ff.  

 

EXAMPLE 4.11 A coin is placed on a turntable turning at 3/100  RPM (revolutions per 

minute). What is the coefficient of friction between the coin and the turntable if the maximum 

radius, before the coin slips, is 0.14 m? 

Solution 

The frictional force Ff between the coin and turntable provides the center-directed force to 

keep the coin on the turntable. This center-directed force must equal mv2 / r. 

Ff  = µ N = µ m g     µ m g = mv2 / r     

 or  µ = v2 / (r g) 

149.0
60

min1

min

1

3

100
14.0.22 −⋅=== sm

s
mfrv ππ

 Therefore, µ = 0.492 / (0.14 ⋅ 9.8) = 0.175 

 

Fig.4.10 Free body diagram 

 

EXAMPLE 4.12 The banked exit ramp. Curved exit ramp for a highway is tilted toward the 

inside of the curve, so a car moving at the designated speed can negotiate the curve even 

when the road is covered with ice. Let the designated speed be 13.4 m/s and the radius is 50 

m. At what angle should the curve be banked? 

Solution  

On an untilted road, the force that causes the radial acceleration is the force of static friction 

between car and road. However, if the road is tilted at an angle θ, the normal force N has a 

horizontal component N·sinθ pointing to the center of the curve. Because the ramp is to be 

designed so that the force of static friction is zero, only the component N·sinθ causes the 

radial acceleration. So, the Newton`s second law gives for the radial direction: 
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∑ {� = � sin 5 � }8�/2     
The car is in equilibrium in the vertical direction. 

Thus, form  ∑ {� � 0,    we have 

� cos 5 � }N    

Dividing (1) by (2) gives     tan 5 � 8�/!2N$.  
So 

5 � tan:c�8�/!2N$� � 20.1°  

Fig.4.11 Car on the banked curve 

If a car rounds the curve at a speed less (more) than 13.4 m/s, friction is needed to keep it 

from sliding down (up) the bank. The banking angle is independent of the mass of the vehicle. 

 

EXAMPLE 4.13 An object falling through the air at high speed experiences a drag force FD 

which can be expressed approximately as 2/2
ADD AvCF ρ=  

Here ρA is the density of air, CD is a drag coefficient that depends on the shape and texture of 

the falling object, and A is the projected area of the object as seen looking up from the ground. 

CD is a dimensionless number between 0 and 1.  

(a) Determine the maximum speed (called the terminal velocity vT) a falling object reaches in 

the presence of this drag force,  

(b) How does the terminal velocity of an object depend on its size? To answer this, calculate 

the ratio of the terminal velocities for two spherical hailstones, one of radius R1 and a larger 

one of radius R2  

Solution  

(a) As the object falls, v gets larger and larger, until finally v gains the terminal velocity vT  

{ � �����8�
2 ( }N � }� 

When vT = constant, a = 0, thus  
AC

mg
v

AD
T

2

ρ
=  

(b) For a sphere of ice, m = (density).(volume), 3/π4 3Rm ρ= . The projected area seen 

from below is A = π R2. Thus 

 

RR
C

g

RC

gR

AC

mg
v

ADADAD

κ
ρ

ρ
πρ

πρ
ρ

====
3

8

)(

)3/4(22
2

3

T ,   where   
ADC

g

ρ
ρκ

3
8=    
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For two ice spheres,  
1

2

1

2

1

2

R

R

R

R

v

v

T

T ==
κ
κ

 

Thus large objects fall faster than small ones of the same shape. Comparing the kinetic 

energies KE of these two objects yields: 

�����c = }8��� 2⁄
}8�c� 2⁄ � �!4 3⁄ $���d8���

�!4 3⁄ $��cd8�c� � ��d8���
�cd8�c� � ��d�cd

s8��8�ct� � ��d�cd
���c � s���ct\ � s���ct\

 

So, a hail having diameter D2 = 6 mm has kinetic energy !6 2⁄ $\ � 81-times bigger than a 

hail with diameter D1 = 2 mm. Big hailstones can flatten a wheat field, whereas small ones do 

not hurt it.  

 

EXAMPLE 4.14 A manufacturer quotes an aerodynamic constant C = 0.30 for an automobile 

of mass 900 kg and cross-sectional area A = 2.8 m2. If the driver were to coast (in neutral) 

down a long hill with a slope of 8.0° (see Fig.4.12), what would be the terminal velocity? 

Recall that terminal velocity is the constant final velocity of a body moving under the 

combined influence of gravity and air resistance. Assume that air resistance is the only source 

of friction. 

Solution  

We need only consider the components of the forces parallel to the motion.  

   
 

 

Fig.4.12 Free body diagram 

For constant terminal velocity vT, FD 

balances component of weight along the 

slope.  

      θsinmgGx =          and      

2/2
A, AvCF DxD ρ=  

 

When terminal (constant) velocity is reached, the two forces balance and the acceleration is 

zero. Thus,                                 θρ sin2/2 mgAvC TAD =   

Solving for the velocity, we find  8� � j�wl n�� �
�����               

Inserting the values given in the problem, plus the air density ρA = 1.3 kg/m3 
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8W = �2!900 kg$!9.81 m · s:�$ sin 8°
0.3!1.3 kg · m:d$!2.8 m�$ � 47 m/s 

On such a slope, considerable speed can be attained before air resistance limits the motion. 

 

EXAMPLE 4.15 The oscillations of simple pendulum can be analyzed in terms of force. For 

small oscillations the tension in the cable can be written in components: one vertical and the 

other - the restoring force, the force that returns the mass to equilibrium.  

Solution 

For small angle oscillations: { cos 5 �  {    and   { sin 5 � ( wl�
� � (!}N/�$@,   with x 

being the displacement, approximately equal to the arc length. As the acceleration is caused 

by the x-component of F,  the Newton`s second law yields: 

} d�
dC� @ � ( }N

� @.                 As     @ � �5: 

} d�
dC� �5 � ( }N

� �5          or        d�
dC� 5 � ( N

� 5 

Fig.4.13 Simple pendulum 

As we know, the solution of this equation is:   5 � 5L cos!TC � �$.  

Then putting the second derivation of 5 into the last equation we get the results: 

 T � jl
�     and         S � 2�j �

l    

The most important point to note is that the period T is independent of the mass. Historically 

this was one of the first instruments to measure “g” - the gravitational constant.  

 

EXAMPLE 4.16 A 1 500-kg car moving on a flat, horizontal road negotiates a curve. If the 

radius of the curve is 35.0 m and the coefficient of static friction between the tires and dry 

pavement is 0.500, find the maximum speed the car can have and still make the turn 

successfully. (13.1 m/s) 
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EXAMPLE 4.17 A body of mass m hangs from two cables fastened symmetric to a support as 

in Figure 4.14. Calculate the magnitude T of tensions �_, �^ in the cables.  

   

Fig.4.14 Free body diagram                    Fig.4.15 The dependence of the ratio T/G on the angle 
 

Solution  

We decompose the weight G into directions of cables. From the free body diagram we can 

write:   cos 
 �  /�
W;      So:  

S � Sc � S� � ¡
2 cos 
            or          S

¡ � 1
2 cos 
    

The dependence of the ratio T/G on the angle 
 is shown in Fig.4.15. For small angles the 

tension is approximately 0.5 G. Note the strong increase of the tension for angles bigger than 

80°. 

Let us next solve this example for an asymmetric case shown in Fig. 4.16. 

Solution  

We must again decompose the weight G into directions of cables. We know angles and the 

side G, so we can use the sine rule of triangles. 

Scsin " � ¡
sin!180° ( 
 ( "$ 

 

Sc � ¡ sin "
sin!180° ( 
 ( "$ 

S� � ¡ sin 

sin!180° ( 
 ( "$  

Fig.4.16 Free body diagram 

 

Note, the tensions Sc  and  S�  are proportional to sin "  and   sin 
, respectively. Not vice 

 versa, as one would expect! 

Setting 
 � " we should receive the foregoing result - ¡/!2 cos 
$. Let us prove it: 
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Sc = S� = ¡ sin 
sin!180° − 2
$ = ¡ sin 
sin 2!90° − 
$ = ¡ sin 
2 sin!90° − 
$ cos!90° − 
$
= ¡ sin 
2 cos 
 sin 
 = ¡2 cos 
 

 

EXAMPLE 4.18 A traffic light weighing 122 N hangs from a cable tied to two other cables 

fastened to a support as in Figure 4.17. The upper cables make angles of 37.0° and 53.0° with  

the horizontal. These upper cables are not as strong as the 

vertical cable and will break if the tension in them exceeds 

100 N. Does the traffic light remain hanging in this situation, 

or will one of the cables break? (T1 = 73.4 N, T2 = 97.4 N, 

both values are less than 100 N, so they will not break) 

 

 

 

 

 

Fig. 4.17 Traffic lights 

  

EXAMPLE 4.19 A car of mass m is on an icy driveway inclined at an angle θ. Find the 

acceleration of the car, assuming the driveway is frictionless. So far we were neglecting the 

drag and friction forces (a = g sin θ).  

 

EXAMPLE 4.20 A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the 

puck always remains on the ice and slides 115 m before coming to rest, determine the 

coefficient of kinetic friction between the puck and ice. (µk= 0.177) 

 

EXAMPLE 4.21 A body of mass m is on an incline at an angle 45 ̊. After moving 1 m its 

speed increased from the initial value 1.8 km/h to 12.6 km/h. Determine the coefficient of 

kinetic friction. (µk  = 0.135) 

 

EXAMPLE 4.22 A small sphere of mass m is attached to the end of a cord of length L at an 

angle θ from vertical and set into motion with constant speed v in a vertical circle about a 

fixed point O. Determine the period T of this conical pendulum. (S = 2�j¢xyn�l ) 

 

37º 53

T1 
T2 

T3 
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5 WORK, ENERGY, POWER. 

 

A system is most often a single particle, a collection of particles or a region of space. A 

system boundary separates the system from the environment. Many physics problems can 

be solved by considering the interaction of a system with its environment. 

 The work  W done on a system by an agent exerting a constant force F on the system is 

the product of the magnitude ∆r of the displacement of the point of application of the force 

and the component { cos £ of the force along the direction of the displacement ∆r: 

¤ = ¥ ∙ ∆- = { ∆2cos £ 

where the result is a scalar quantity and Θ is the angle between the two vectors. The scalar 

product obeys the commutative and distributive laws. 

If a varying force does work on a particle as the particle moves along the x axis form 

@§  to @¨, the work done by the force on the particle is given by 

¤ = P {�d@�©
�©

 

Where {� is the component of force in the x-direction. 

 The kinetic energy KE of a particle of mass m moving with a speed v is 

�� = !1 2⁄ $}8� 

 The work - kinetic energy theorem states that if work is done on a system by 

external forces and the only change of the system is in its speed, then 

ª ¤ = ��̈ − ��§ = !1 2⁄ $}8�̈ − !1 2⁄ $}8§� 

 For a non-isolated system, we can equate the change in the total energy stored in the 

system to the sum of all the transfers of energy across the system boundary. For an isolated 

system, the total energy is constant – this is a statement of conservation of energy. 

 If a kinetic friction force ¥«¨ acts along a distance d, the kinetic energy of the system 

is reduced and the appropriate equation to be applied is 

∆�� = ��̈ −��§ = −{«¨ ∙ ¬ + ª ¤­<k®� ¨­�¯®° 

or  
��̈ = ��§ − {«¨ ∙ ¬ + ª ¤­<k®� ¨­�¯®° 

 The instantaneous power P is defined as the time rate of energy transfer. If an agent 

applies a force F to an object moving with a velocity v, the power P delivered by that agent is 
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± = d¤dC = ¥ · D 

 

EXAMPLE 5.1 A roller-coaster car of mass m glides down to the bottom of a straight section 

of inclined track from a height h. (a) What is the work done by gravity on the car? (b) What is 

the work done by the normal force? Treat the motion as particle motion. 

Solution  

(a) Figure 5.1 shows the inclined track. The roller-coaster car moves down the full length of 

this track. By inspection of the right triangle formed by the incline and the ground, we see that 

the displacement of the car has a magnitude   ² � k
n�� � 

 

 
 

Fig.5.1 A roller- coaster car 
 

Fig.5.2 Free body diagram 

Figure 5.2 shows a "free-body" diagram for the car on an incline of height h; the forces acting 

on it are the normal force N and the weight G. 

The weight G makes an angle (90° - θ) with the displacement s. The work W done by the 

weight G along the path s is 

 ¤ � ³ · ´ � ¡² cos!90° ( 5$ � }N k
n�� µ cos!90° ( 5$ � }N k

n�� µ sin 5 � }N¶
  

 (b)The work done by the normal force is zero, since this force makes an angle of 90º with the 

displacement. The important thing from this result is that the work done by the weight is 

independent of the angle of the incline - it depends only on the change of height, not on the 

angle or the length of the inclined plane 

 (c) Remember also that the result of zero work for the normal force is quite general. The 

normal force N acting on any arbitrary body rolling or sliding on any kind of fixed surface 

never does work on the body, since this force is always perpendicular to the displacement.  

 

EXAMPLE 5.2 Calculate the kinetic energy of each of the following: 

(a) The Earth orbiting the Sun m = 5.98 ·1024 kg v =2.98 ·104 m/s 

(b) Car m = 1500 kg v = 27 m/s 

(c) World-class sprinter m = 80 kg v =10 m/s 
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(d) Rifle bullet m = 0.01 kg v =1000 m/s 

(e) Nitrogen molecule in air m = 4.6 ∙ 10-26 kg  v =500 m/s 

Solution  

Using  KE = mv2 /2    yields the following interesting results: 

(a) 2.66 ∙ 1033 J,  (b) 5.47 ∙ 105 J,  (c) 4 ∙ 103 J,  (d) 5 ∙ 103 J,  (e) 5.8 ∙ 10-21 J 

 

EXAMPLE 5.3 A 1000-kg elevator cage descends 400 m within a skyscraper. 

(a) What is the work done by gravity on the elevator cage during this displacement?  

(b) Assuming that the elevator cage descends at constant velocity, what is the work done by 

the tension of the suspension cable? 

Solution  

(a) With the x axis arranged vertically upward, the displacement is negative,  

∆x= -400 m; and the x component of the weight is also negative, 

¡� = −}N = −9800 N 

Hence the work done by the weight is 

¤ = ¡�∆@ = !−9800 N$!−400 m$ = 3.92 ∙ 10` J 
(b) For motion at constant velocity, the tension force must exactly balance the weight, so the 

net force Fnet,x is zero. Therefore, the tension force of the cable has the same magnitude as the 

weight, but the opposite direction: Tx = mg = 9800 N 

The work done by this tension force is then  
¤ = S�∆@ = !9800 N$!−400 m$ = −3.92 ∙ 10` J 

This work is negative because the tension force and the displacement are in opposite 

directions. Gravity does work on the elevator cage, and the elevator cage does work on the 

cable. 

COMMENTS: (a) Note again that the work done by gravity is completely independent of the 

details of the motion; the work depends on the total vertical displacement and on the weight, 

but not on the velocity or the acceleration of the motion. (b) Note that the work done by the 

tension is exactly the negative of the work done by gravity, and thus the net work done by 

both forces together is zero (we can also see this by examining the work done by the net 

force; since the net force Fnet,x is zero, the net work is zero). However, the result for the work 

done by the tension depends implicitly on the assumptions made about the motion. Only for 

motion with no acceleration does the tension force remain constant at 9810 N. For instance, if 

the elevator cage were allowed to fall freely with the acceleration of gravity, then the tension 
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would be zero; the work done by the tension would then also be zero, whereas the work done 

by gravity would still be 3.92 ∙106 J.  

 

EXAMPLE 5.4 What is the work performed in stretching a spring 0.1 m, when for stretching 

the spring @L = 0.02 m we need force {L = 2500 N? 

Solution    

{ = −¹@, ¹ = {L@L 

The force is in the direction of the displacement so ¥ ∙ dE = {d@ 

¤ = P {d@ = ¹ P @d@ = ¹ @�
2 ºL

L.cL.c
L = 2500 N0.02 m ∙ �!0.1 m$� − 0�2 = 625 J 

EXAMPLE 5.5 Place a block m = 3.0 kg at the top of a h = 3.4 m high frictionless incline. At 

the bottom of the incline the block encounters a spring with a constant of 400 N/m. No energy 

is lost to friction. How far is the spring compressed? 

Solution  

The potential energy at the top of the plane, which is the same as the kinetic energy at the 

bottom of the plane, goes into compressing the spring. The kinetic energy at the top of the 

plane is mgh  

So: }Nℎ = «�9
�        or     @ = j�wlk« = j�∙d∙f.e∙d.\ »\LL ¼ m⁄ = 0.71 m  

 

EXAMPLE 5.6 An elevator car has a mass of 1 000 kg and is carrying passengers having a 

combined mass of 200 kg. A constant friction force of 4 000 N retards its motion.  

(a) How much power must a motor deliver to lift the elevator car and its passengers at a 

constant speed of 3.00 m/s? (64.9 kW).  

(b) What power must the motor deliver at the instant the speed of the elevator is v if the motor 

is designed to provide the elevator car with an upward acceleration of 1.00 m/s2? (23.4 kW) 

 

EXAMPLE 5.7 A block of mass 1.6 kg is attached to a horizontal spring that has a force 

constant of 103 N/m. The spring is compressed 2.0 cm and is then released from rest, (a) 

Calculate the speed of the block as it passes through the equilibrium position x = 0 if the 

surface is frictionless. (0.5 m/s) (b) Calculate the speed of the block as it passes through the 

equilibrium position if a constant frictional force of 4.0 N retards its motion from the moment 

it is released.  
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Fig. 5.3 A block of mass attached to a spring 

Solution  

(a) Block starts with zero initial speed and its initial position is @§ = −2 cm. The work done 

until it reaches @¨ � 0 cm is: 

  ¤° � ½ ¹@d@L
:L.L� � c

� ¹@�¾:L.L�
L � c

� · 10dNm-1 · !(2 · 10:�m$� � 0.2 J 
Using work-kinetic theorem, we get ¤° � c

� }8�̈ ( c
� }8§�, 0.2� c

� !1.6 kg$ 8�̈ ( 0, hence 

8¨ � 0.5 m/s. 

(b)First calculate the lost ∆�� of kinetic energy because of friction: 

∆�� � ({«�¬ � (4 N ·2·10:� m� ( 0.08 J 
The final kinetic energy in the presence of friction is then 

��̈ � 0.2 J ( 0.08 J � 0.12 J� 1
2 }8�̈ 

And hence  8¨ � �2 · 0.12 J/m � �2 · 0.12 J/!1.6 kg$ � 0.39 m/s 

 

EXAMPLE 5.8 Place a mass m on a track made up of a flat section, L, with coefficient of 

friction, µ, and two frictionless semicircular surfaces of radius R. Let the mass start from the 

top of one of the quartercircular and calculate where it comes to rest. 

Solution  

 

Fig. 5.4 A mass moving on a track 



 42

The initial potential energy is mgR. When the mass encounters the friction surface, this 

(potential) energy is dissipated in doing work to overcome friction. Assuming the energy lost 

due to friction in one traverse is less than the initial potential energy, the mass will rise to a 

height (on the opposite semicircle) R' dictated by the energy statement  

}N�À = }N� − Á}N� 

After another traverse of the flat portion of the track the height will be dictated by 

}N�ÀÀ = }N� − 2Á}N� 

and so on until all the original potential energy is dissipated.  

 

EXAMPLE 5.9 In an amusement park roller coaster ride a car starts from rest at point A and 

races through a loop-the-loop. What is the minimum height h from which the car can start if it 

is not to leave the track at point B? The loop has radius R. 

 

 

Fig. 5.5 A roller coaster ride 

 

Solution  

If the car is just about to leave the track at point B, the normal force exerted on the car by the 

track at this point is zero. The only force acting on the car is then mg, and this must provide 

the needed centripetal force to keep the car moving along the circular track. Thus 

 }N = w>9
Â   so   8� = �N 

We can find the speed v as a function of the starting elevation h by applying the conservation 

of energy principle.  }Nℎ + 0 = }N2� + w>9
� ,   replacing 8� = �N 

 Nℎ = N2� + N�/2,     ℎ = 5�/2 

 

EXAMPLE 5.10 Falling rock. If the original height of the rock is y1= h = 3 m, calculate the 

rock´s speed when it has fallen to 1 m above the ground. 

R

h
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Solution  

One approach is to use the kinematic equations. Let us instead apply the principle of 

conservation of mechanical energy, assuming that only gravity acts on the rock. We choose 

the ground as our reference level (y = 0). At the moment of release (point 1) the rock´s 

position is y1 = 3 m and it is at rest: v1 = 0. We want to find v2 when the rock is at position y2 

= 1 m.  

}8c� 2⁄ + }NAc = }8�� 2⁄ + }NA� 

The m`s cancel out. Setting v1 = 0 and solving for 8�� we find 

8�� = 2N!Ac − A�$ = 2 ∙ 9.8 m ∙ s:� ∙ !3 − 1$ m = 39.2 m�s:� 

8� = √39.2  m ∙ s:c = 6.3  m ∙ s:c 

 

EXAMPLE 5.11 A compact car has a mass of 800 kg, and its efficience is rated at 18 % (that 

is, 18 % of the available fuel energy is delivered to the wheels). Find the amount of gasoline 

used to accelerate the car from rest to 27 m/s. Use the fact that the energy equivalent of 1 liter 

gasoline is 3,6 ∙ 10Ä J.  
Solution  

The energy required to accelerate the car from rest to a speed v is equal to its final kinetic 

energy: 

�« = !1 2⁄ $}8� = !1 2⁄ $!800 kg$!27 m/s$� = 2.9 ∙ 10b J 
If the engine were 100 % efficient, each liter of gasoline would supply 3,6 ∙ 10Ä J of energy. 

Because the engine is only 18 % efficient, each liter delivers an energy of only 0.18 ∙ 3.6 ∙
10Ä J = 6.5 ∙ 10` J. Hence, the number V of liters used to accelerate the car is 

Å = 2.9 ∙ 10b J6.5 ∙ 10` J/L = 0.045 L 

Let us estimate that it takes 10 s to achieve the indicated speed. The distance traveled during 

this acceleration is  

∆@ = 8Ç∆C = 8§ + 8¨2 ∆C = 0 + 272 10 = 135 m 

At a constant cruising speed of 27 m/s, 0.045 L of gasoline is sufficient to propel the car 

approximately 800 m, six times further. This demonstrates the extreme energy requirements 

of stop-and-start driving. 
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EXAMPLE 5.12 Car accelerating up a hill. A car of mass m is accelerating up a hill. The total 

resistive force in N is  È< = !218 � 0.78�$, where v is the speed in m/s. Determine the power 

the engine must deliver to the weels as a function of speed. 

 

Solution  

The forces on the car are shown in figure 5.6. Applying Newton´s second law to the motion 

along the road surface, we find 

ª {� � { ( È< ( }N sin 5 � }� 

{ � }� � }N sin 5�È< 
{ � }� � }N sin 5 � !218 � 0.78�$ 

And the power required to move the car is 

± � {8 �  }�8 � }N8 sin 5 � 2188 � 0.78d 
 

Fig. 5.6 A car moving uphill 

 

The term mav is the power that the engine must deliver to accelerate the car. If the car moves 

at constant speed, this term is zero and the total power requirement is reduced. The term 

ÉÊD ËÌÍ Î is the power required to provide a force to balance a component of the 

gravitational force as the car moves up the incline. This term would be zero for motion on a 

horizontal surface. The term ^_Ï D is the power to balance rolling friction, and the term 

�. ÐDÑ is the power needed against air drag.  

If we take m = 1450 kg, v = 27 m/s, a = 1 m/s2 and 5 � 10°, then the various terms in P are: 

}�8 � !1450 kg$!1 m/s�$!27 m/s$ � 39 kW 

}N8 sin 5 � !1450 kg$!9.8 m/s�$!27 m/s$!sin 10°$ � 67 kW 

218 8 � 218!27 m/s$ � 5.9 kW 

0.78d � 0.7!27 m/s$d � 14 kW 

So the total power required is 126 kW. Note that the power requirements for traveling 

at constant speed of 27 m/s on a horizontal surface are only 20 kW (the sum of the last two 

terms). Furthermore, if the mass were halved (the case of compact car), then the power 

required also is reduced by almost the same factor. 

 

EXAPLE 5.13 The simple pendulum. A sphere of mass m attached to mass less cord of length 

L is released from rest when the cord makes an angle 5� with the vertical and the pivot is 

frictionless. a) Find the speed of the sphere when it is at the lowest point B. 

Solution  
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The only force that does work on the sphere is the gravitational force (the force of tension is 

always perpendicular to each element of the displacement and so does no work). Because the 

gravitational force is conservative, the total mechanical energy of the pendulum – Earth 

system is constant (in other words, we can classify this as an “energy conservation” problem) 

as the pendulum swings, continuous transformation between potential energy (PE) and kinetic 

energy (KE) occurs. At the instant the pendulum is released, the energy of the system is 

entirely potential energy. At point B the pendulum has kinetic energy, but the system has lost 

some potential energy. At C the system has regained its initial potential energy, and the 

kinetic energy of the pendulum is again zero.  

We measure the y-coordinates of the sphere from the center of rotation, then from the 

principle of mechanical energy conservation: 

A� = −� cos 5�,                       AÓ � (� 

±�Ô � (}N� cos 5�,                 ±�Ó � (}N� 

 

��� � ±�� � ��Ó � ±�Ó 

0 ( }N� cos 5� � }8Ó�/2 ( }N� 

                              8Ó � �2N�!1 ( cos 5�$  

Fig.5.7 The simple pendulum 

 

b) What is the tension TB in the cord at point B? 

Solution 

Since the force of tension does no work, we cannot determine the tension using the energy 

method. To find TB, we can apply Newton´s second law to the radial direction. First, recall 

that the radial acceleration �� of a particle moving in a circle is equal to 8�/2 directed toward 

the center of rotation. Since 2 � �, we obtain 

ª {� � SÓ ( }N � }�� � }8Ó�/� 

Substituing 8Ó gives the tension at point B: 

SÓ � }N � 2}N!1 ( cos 5�$ � }N!3 ( 2cos 5�$ 

Note that the tension SÓ in B is greater than the weight mg of the sphere. 

Note, this equation gives the expected result that SÓ � }N when the initial angle 5� � 0. 
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EXAMPLE 5.14 A pendulum of length 2 m and mass 0.5 kg is released from rest when the 

cord makes an angle of 30° with vertical. Find the speed of the sphere and the tension in the 

cord when the sphere is at its lowest point. (2.29 m/s, 6.21 N). 

 

EXAMPLE 5.15 On a frozen pond, a person kicks a 10 kg sled, giving it an initial speed of 

2.2 m/s. How far does the sled move if the coefficient between the sled and ice is 0,1? (2.5 m) 

 

EXAMPLE 5.16 A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and 

inclined at an angle of 5 = 30.0º as shown in next Figure. The crate starts from rest at the top, 

experiences a constant friction force {̈  of magnitude 5.00 N, and continues to move a short 

distance on the horizontal floor after it leaves the ramp. (a) Use energy methods to determine 

the speed of the crate at the bottom of the ramp. (b)  How far does the crate slide on the 

horizontal floor if it continues to experience a friction force of magnitude 5.00 N? (2.54 m/s; 

1.94m) 

 

 

Fig. 5.8 A crate sliding down the ramp 
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6 GRAVITATIONAL FIELD 

Newton’s law of universal gravitation says: “Every particle in the universe attracts every 

other particle with a force directly proportional to the product of their masses and inversely 

proportional to the square of the distance between them. The direction of this force line is 

along the line joining the particles.” 

In vector form the Newton’s law of universal gravitation is: 

¥ = −¡ }c}�2d - 

¥ is the gravitational force exerted on the mass m2 by the particle of mass m1, - is the position 

vector of the particle 2 with respect to the particle 1, the minus sign indicates that the 

gravitational force has opposite direction to the position vector, it means it is directed towards 

the particle 1. The multiplication by the displacement vector does not change the inversely 

proportional dependence of the gravitational force to the square of the distance between the 

particles as the magnitude of the position vector can be divided with the cube of the position 

vector in the denominator. 

 The universal gravitational constant  G ≈ 6,674 ·10-11 N·m2·kg-2. 

 The property which characterizes the gravitational field itself is called gravitational 

field strength and is defined as: 

 Õ = ¥/} 

¥ is the gravitational force acting on the particle of mass m. Using Newton’s law of universal 

gravitation we can express the gravitational field created by the particle of mass M in a 

particular point in space with the position vector - as 

   Õ = −¡ Ö�× -                                     () 

  

Gravitational potential energy is defined with respect to infinity, it means 

�~!2 → ∞$ = 0 and is defined with equation   �~ = −¡Ú;Ú9Û  

Gravitational field  can be also defined with gravitational potential V with respect to 

any referential point, e.g. in infinity Å!2 → ∞$ = 0. Gravitational potential at certain point is 

Å = ÜvÚ  
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EXAMPLE 6.1 The gravitational force between spherical objects and small objects can be 

modeled as particles having masses m1 and m2 separated by a distance r, is attractive and 

according to Newton’s law of gravitation has a magnitude 
2

21 / rmGmFg = . 

A satellite of mass m moves in a circular orbit around the Earth at a constant speed v at 

altitude h above the surface of Earth. Determine the speed of the satellite. 

Solution  

The only external force acting on the satellite is the force of gravity, which acts toward the 

center of the Earth and keeps the satellite in its circular orbit. Therefore, 

2/rmGMFF Egr == . From Newton’s second law F = ma we obtain 

22 // rmGMrmv E= .   Solving for v gives   

( )hrGMrGMv EEE +== // , where rE  is the radius of Earth. 

 

EXAMPLE 6.2 Geosynchronous satellite is one that stays above the same point on the Earth, 

which is possible only if it is above a point on the equator. Such satellites are used for TV and 

radio transmission, for weather forecasting, and as communication relays. Determine (a) the 

height above the Earth’s surface such a satellite must orbit, (b) such a satellite’s speed, and (c) 

compare to the speed of a satellite orbiting 200 km above Earth’s surface. 

Solution  

To remain above the same point on Earth as the Earth rotates, the satellite must have a period 

of one day. We can apply Newton’s second law, F = ma, where a = v2/r if we assume the 

orbit is circular. 

(a) The only force on the satellite is the force of gravitation, so

s86400360024,/2,// 22 =⋅=== TTrvrvmrmGM SSE π  

( ) ( ) 22222 /2//2// TrrTrrvrGME ππ === , or  ( )223 2/ πTGMr E=  

( ) ( ) ( )3 222422113 22 2/s 86400kg1098.5kgNm1067.62/ ππ ⋅⋅⋅⋅== −−TGMr E  

km 42300m1023.4 7 =⋅=r  
Subtracting the Earth´s radius of 6378 km we receive, the geosynchronous satellite must orbit 

about 36,000 km (about 6 RE) above the Earth´s surface. 

(b) We solve for v in the satellite equation given in part (a): 

m/s3070/2       m/s3070/ ==== TrvrGMv E π , 
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(c) The equation in part (b) for v shows rv /1≈ .  

So for  rh = rE + h = 6380 + 200 = 6580 km   we get 

m/s7780m/s6580/300.423070/ === hh rrvv  

Note. The center of a satellite orbit is always at the center of the Earth, so it is not possible to 

have a satellite orbiting above a fixed point on the Earth at any latitude other than 0°. 

 

EXAMPLE 6.3 Calculate the escape speed from Earth for a 5000 kg spacecraft, and 

determine the kinetic energy it must have at Earth´s surface in order to escape the Earth´s 

gravitational field. 

Solution ��§ + ±�§ = ��̈ + ±�̈  

KEƒ = 0 because final velocity is zero, and PEƒ = 0 because its final distance is infinity, so 
 }8®°¯�

2 + −¡ÝÞ}�Þ = 0 + 0 

 8®°¯ = j� ÖÜÂÜ = j�∙`.`Ä∙cLo;;N∙m2/kg9 ∙b.fe∙cL9ßkg`.dÄ∙cLàm = 1.12 ∙ 10\ m/s 

Kinetic energy of spacecraft: �� = c� }8®°¯� = 3.13 ∙ 10cc J  
 

EXAMPLE 6.4 A satellite with a mass of 200 kg is placed in Earth orbit at a height of 200 km 

above the surface, (a) Assuming a circular orbit, how long does the satellite take to complete 

one orbit? (b) What is the satellite's speed? (c) What is the minimum energy' necessary to 

place this satellite in orbit (assuming no air friction)? ((a) 1.48 h, (b) 7.79 km/s, c) 6.43∙109 J) 
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7 MANY BODIES MECHANICS 

When talking many bodies’ mechanics we think of system of particles that is physically 

explored as one unit. The concept of the center of mass (CM) is helpful in understanding the 

behavior of a system of particles. For two particles of equal mass, the center of mass lies 

midway between them on the line joining them. For an object like a brick, the center of mass 

is at the geometrical center. 

If a system consists of particles of mass m1 at position r1, m2 at position r2,...,and mn at 

rn, the position of the center of mass is defined to be 

2�Ö = }c-c + }�-� + ⋯ }â-â}c + }� + ⋯ }â = }c-c + }�-� + ⋯ }â-âÝ = 1Ý ª }§-§
â
c  

Here M is the total mass of the system. The x, y and z coordinates of the center of mass are 

∑
=

=
n

i
iiCM xm

M
x

1

1
 ∑

=

=
n

i
iiCM ym

M
y

1

1
 ∑

=

=
n

i
iiCM zm

M
z

1

1
.                 

The center of mass of a system of particles with total mass M moves like an equivalent 

particle of mass M would move under the influence of the net external force on the 

system.                 Ý��Ö = ∑ ¥ãäY,§§  

The total momentum å<­< of a system of particles is defined as: 

å<­< = ª å§ = ª }§D§§§
= ÝD�Ö 

Hence the total linear momentum of the system equals the total mass M multiplied by the 

velocity D�Ö of the center of mass. In other words, the total linear momentum of the system is 

equal to that of a single particle of mass M moving with a velocity D�Ö. 

Integrating  Ý��Ö = ∑ ¥ãäY,§§   

P ª ¥ãäY,§§
dC = P Ý��ÖdC = Ý P dD�ÖdC dC = Ý P dD�Ö = Ý ∙ ∆D�Ö = ∆å<­< = æ

 

It means that the total linear momentum of a system of particles is conserved if no net 

external force is acting on the system ( ∑ ¥ãäY,§§ = 0$. It follows that for an isolated system 

of particles, both the total momentum and the velocity of the center of mass are constant in 

time. This statement is the generalization of the law of conservation of momentum for a 

many-particle system  
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Torque ç is the rotational quantity analogous to force. For an object to acquire an angular 

acceleration, it must be subject to a non-zero net torque. Torque means "twist". The torque ç 

due to a force F about a pivot P is  

ç = - × ¥ 

Where r is the position vector (a vector from the point from which torque is measured to the 

point where force F is applied) and the magnitude of the torque is 

è = |ç| = 2{ sin 5 

The angular momentum L of a particle relative to an axis through the origin O is defined by 

the cross product of the particle’s instantaneous position vector r and its instantaneous linear 

momentum p:             é = - × å 

Now we can recognize that the concept of angular momentum is not going to be easy to work 

with. If I choose any point on line of momentum p vector, then the angular momentum 

relative to such point is zero (as both vectors are then in the same direction, θ is zero and 

sinθ = 0 as well). It is clear now that angular momentum L is not an intrinsic property of a 

moving object, unlike momentum p, which is an intrinsic property. What the angular 

momentum is depends on the point of origin we choose. The total angular momentum of 

a system of particles is    éêëê = ∑ -� × }�D��             

Time derivation of angular momentum  
=é=< = ç®�< is analogous to  

=å=< = ¥®�< for translational 

motion. If no external torque acts on a system, the angular momentum of the system 

remains constant:  

If   ç®�< = �   then L = const 

This is the law of conservation of angular momentum L. 

The moment of inertia  ì = ∑ }�2�̂�  ,
 
 ri is the distance from the axis of rotation of i-th point 

with the mass mi.                

The total kinetic energy associated with rotational motion is 

��Â = ª ��Â©§
= 12 ª }§8§�§

= 12 ª }§2§�§
T� = 12 T� ª }§2§�§

= 12 ìT� 

�� = !ì�Ö + }��$T�
2 = ì�ÖT�

2 + }��T�
2 = ì�ÖT�

2 + }8�
2 = ��Â + ��W 

 

 This is an important result. It states that the kinetic energy of a rolling object is equal 

to the kinetic energy of translation of the center of mass (imagining all of the mass 

concentrated there) plus the kinetic energy of rotation about the CM. 
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Collisions When two particles collide, the forces they exert on each other are much larger 

than any external forces acting. This allows us to assume that external forces are negligible; 

hence the momentum of the system remains constant. (We call such systems isolated). This 

means that the system's momentum just before a collision is the same as the momentum just 

after the collision. In a collision some kinetic energy of the particles is converted to heat, 

sound, plastic distortion, and so on. Such collisions are called inelastic collisions. Sometimes 

the loss in kinetic energy is negligible (as when two billiard balls collide). Such collisions are 

called elastic collisions, and for them the kinetic energy of the system is conserved before and 

after the collision. Of course, the kinetic energy of an individual particle can change, but the 

combined kinetic energy of both particles remains the same.  

Inelastic collisions When two objects moving in the same direction, collide and then 

stick together, the collision is perfectly inelastic. If mass m1 has speed v1 and mass m2 has 

parallel speed v2 just before a perfectly inelastic collision (the particles stick together), the 

speed V just after the collision is determined by ( )Vmmvmvm 212211 +=+  or

 
21

2211

mm
vmvm

V
+
+=  

Elastic collisions Let us have a case of two masses moving in the same direction and 

then colliding (1D case, where signs take care of direction). If the collision is perfectly elastic, 

masses m1 and m2 can have different velocities V1 and V2 after the collision. Since the 

momentum and the kinetic energy remains constant and we have the case when the two 

masses move in the same direction before the collision 

22112211 VmVmvmvm +=+   ( ) ( ) ( ) ( ) 2222 2
22

2
11

2
22

2
11 /Vm/Vm/vm/vm +=+ . 

  Equilibrium  The requirements for a body to be in equilibrium are: 

1. The vector sum of all external forces that act on the body must be zero 

2. The vector sum of all external torques that act on the body must be zero 

 

EXAMPLE 7.1 Show that the center of mass of a rod of mass M and length L lies midway 

between its ends, assuming the rod has a uniform mass per unit length. 

 

Solution 

M

Lx

M
dxx

M
xdm

M
x

L
L

CM 22
11 2

0
0

2 λλλ ==== ∫∫  

 



 53

Substitute 
L

M=λ  , xCM = L / 2 

 

 

Fig. 7.1 A rod of mass M and length L 

 

EXAMPLE 7.2 Suppose a rod is nonuniform such that its mass per unit length varies linearly 

with x according to the expression λ = αx, where α is a constant. Find the x-coordinate of the 

center of mass as a fraction of L. 

Solution 

Because the mass per unit length is not constant in this case but is proportional to x, elements 

of the rod to the right are more massive than elements near the left end of the rod. 

In this case, we replace dm by λdx, where λ =αx. 

∫∫∫ ====
LL

CM M

L
xdxx

M
dxx

M
xdm

M
x

0

3

0 3
111 ααλ  

The total mass of the rod:  ∫ ∫ ===
L L

xdxdmM
0

2

2
αα  

Substituting  LxCM 3

2=  

 

EXAMPLE 7.3 Place a small ball of mass m2 on top of a large ball of mass m1 (m1 » m2). 

Drop the two simultaneously onto a floor. The result is impressive. The small ball takes off 

with big speed. We can calculate the height to which the ball would rise if the two are 

dropped from height h. We assume all collisions are elastic. (Hint: Imagine that first the big 

ball collides elastically with the floor, and then when it rebounds, it meets the falling ball that 

is right behind it.) 

Solution  

The big ball hits the floor with speed v1 where conservation of energy during the fall yields

  ( ) ( ) 02/10 2
111 +=+ vmghm   hgv 21 =   

The ball bounces up with speed v1 and collides with the small ball, whose velocity is v2 = -v1.   

After the collision the velocity of the small one is given by solution 

If the collision is elastic the momentum and the kinetic energy remain constant  
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22112211 VmVmvmvm +=+   ( ) ( ) ( ) ( ) 2222 2
22

2
11

2
22

2
11 /Vm/Vm/vm/vm +=+ . 

These two equations can be solved for the two unknown final speeds, V1 and V2 

 ( ) ( )2
2

2
22

2
1

2
11 VvmVvm −−=−  . 

Factoring both sides of this equation:  ( )( ) ( )( )2222211111 VvVvmVvVvm +−−=+−  

Rearranging the first equation      ( ) ( )222111 VvmVvm −−=−  

Dividing the last two: 2211 VvVv +=+  or ( )2121 VVvv −−=− , where 

v1 - v2 is the relative speed of particle 1 with respect to particle 2 before the collision, and V1 – 

V2 is the same quantity after the collision. It is an interesting result - the relative speed of one 

particle with respect to the other does not change in an elastic collision. We can solve this 

equation for V2 and substitute it back into 22112211 VmVmvmvm +=+ . Finally we get:            

2
21

2
1

21

21
1

2
v

mm
m

v
mm
mm

V 








+
+









+
−=        2

21

12
1

21

1
2

2
v

mm
mm

v
mm

m
V 









+
−+









+
=  

 

  where   21 mm >>  ( ) hgvvvvvV 23322 111212 ==−−=−≅  

Applying conservation of energy to the rising small ball gives us the height h to which the 

small ball rises. ( ) /
2

2
22 002/ ghmVm +=+  ( ) ( ) hghgh 92/23

2/ ==  !!! 

 

EXAMPLE 7.4. The blade of a circular saw is initially rotating at 7000 revolutions per 

minute. Then the motor is switched off, and the blade comes to a stop in 8 s. What is the 

average angular acceleration? (-91.6 radians/s2) 

 

EXAMPLE 7.5 An automobile accelerates uniformly from 0 to 80 km/h in 6 s. The wheels of 

the automobile have a radius of 0.3 m. What is angular acceleration of the wheels? Assume 

that the wheels roll without slipping. (12 radians/m2) 

 

EXAMPLE 7.6 The large centrifuge has an arm of length 8.8 m. When rotating at 175 

revolutions per minute, what is the speed of the end of this arm and what is the centripetal 

acceleration? (v = 1.6 ∙102 m/s; ac = 2.9 ∙103 m/s2) 
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EXAMPLE 7.7 A uniform rod of length L and mass M is free to rotate on a frictionless pin 

passing through one end. The rod is released from rest in the horizontal position. 

(a) What is its angular speed when the rod reaches its lowest position? 

 

 
Fig.7.2 A uniform rod of length L and mass M free to rotate on a frictionless pin 

Solution 

We choose the configuration in which the rod is hanging straight down as the reference 

configuration for gravitational potential energy and assign a value of zero for this 

configuration. When the rod is in the horizontal position, it has no rotational kinetic energy. 

The potential energy of the system in this configuration relative to the reference configuration 

is MgL/2 because the center of mass of the rod is at a height L/2 higher than its position in the 

reference configuration. When the rod reaches its lowest position, the energy of the system is 

entirely rotational energy 2

2

1 ωI , where I is the moment of inertia of the rod about an axis 

passing through the pivot. Using the isolated system (energy) model, write a conservation of 

mechanical energy equation for the system: iiff PEKEPEKE +=+  

By substituting we get MglI
2

1
00

2

1 2 +=+ω  

Solving the equation for ω and using 2

3

1
MLI =  for the rod 

L

g

I

MgL 3==ω  

 

(b) Determine the tangential speed of the center of mass and the tangential speed of the 

lowest point on the rod when it is in the vertical position.  

Solution 

Using the result from part (a) 
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gL
L

rvCM 3
2

1

2
=== ωω  

Because r for the lowest point on the rod is twice what it is for the center of mass 

gLvv CM 32 ==  

 

EXAMPLE 7.8 A 75 kg hockey player traveling at 12 m/s collides with a 90 kg player 

traveling, at right angles to the first, at 15 m/s . The players stick together. Find their resultant 

velocity and direction. Assume the ice surface to be frictionless. 

Solution  

This problem can be analyzed by conservation of momentum. Calculate the momenta and 

draw a vector diagram. 

( ) smkgsmkgp /900/12751 ⋅==  

( ) m/s1350/15902 ⋅== kgsmkgp  

The angle of the two hockey players is: 

°=== 56,5.1900/1350tan θθ or  

And the resulting momentum is: 

m/skg16209001350 22 ⋅=+=p  

p2 = 1350 kg m/s 

 

Fig. 7.3 Momentum vector diagram 

The players move off with velocity ( ) m/s83.9/ 21 =+= mmpv  at an angle of 56° to the 

original direction of the 75 kg. 

The second solution: A more formal approach is to write a conservation of momentum 

statement equating the total (vector) momentum before the collision to the total (vector) 

momentum after the collision. Take the plus i direction as the initial direction of the first 

player and the plus j direction as the original direction of the second player. Using the 

numbers already calculated:  

[ ] ( )vkgji 165m/skg1350900 =⋅+      or  [ ]m/s18.845.5 jiv +=   

 

EXAMPLE 7.9 A ballistic pendulum, a device for measuring the speed of a bullet, consists of 

a block of wood suspended by cord. When the bullet is fired into the block, the block is free 

to rise. How high does a 5.0 kg block rise when a 12 g bullet traveling at 350 m/s is fired into 

it? 
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Fig. 7.4 A ballistic pendulum 

Solution  

The collision between the bullet and the block is clearly inelastic (the bullet comes to rest in 

the block). Part of the kinetic energy of the bullet goes into friction as the bullet burrows its 

way into the block. Therefore mechanical energy is not conserved. 

Because the collision is inelastic, apply conservation of momentum of the collision. Before 

the collision, all the momentum is in the mv of the bullet. After the collision, the momentum 

is in the (m + M) V of the block and bullet. We assume that the bullet comes to rest (transfer 

all its momentum) before there is appreciable motion of the bullet-block combination. 

( )VMmmv +=  

After the collision, the rise of the block is determined by energy analysis. The kinetic energy 

of the block goes into potential energy. ( ) ( )ghMmVMm +=+ 2/2 or ghV 22 =  

Substituting for V from  mv = (m + M) V  

ghv
Mm

m
22

2

=








+
, so gh

m

Mm
v 2

+=  or 
22

2









+
=

Mm

m

g

v
h  

gives the relation between the velocity of the bullet and the height the block and bullet rise. 

For this problem 
( )

cm
sm

sm
h 6.3

012.5

012.0

/8.92

/350
2

2

2

=








×
=  

In this problem the 0.012 can be neglected in comparison to 5.0. This is not always the case 

so we write m + M as 5.012 as a reminder to include both m +M in the calculation.  

 

EXAMPLE 7.10 A 6.0 g bullet is fired horizontally into a 2.8 kg block resting on a horizontal 

surface with coefficient of friction 0.30. The bullet comes to rest in the block, and the block 

slides 0.65 m before coming to a stop. What is the velocity of the bullet? 

Solution 
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Fig. 7.5 A bullet fired into a block 

Assume the bullet comes to rest in the block before the block moves appreciably and that all 

the momentum in the bullet is transferred to the bullet-block combination.

 ( )VMmmv +=  

Once the bullet-block combination is moving at V, the kinetic energy, (1/2) (m + M)V 2, goes 

into work to overcome friction  µ(m + M)gx 

( ) ( )ghMmVMm +=+ µ2/2 ,  or hgV µ22 = .    

Substituting ghv
Mm

m µ=








+
2/2

2

 

Or ( ) m/s914m65.0m/s81.930.02
006.0

806.2
2 2 =×=+= gh

m

Mm
v µ  

 

 

EXAMPLE 7.11 A father of mass mf and his daughter of mass md sit on opposite ends of a 

seesaw at equal distances from the pivot at the center. The seesaw is modeled as a rigid rod of 

mass M and length l, and is pivoted without friction. At a given moment, the combination 

rotates in a vertical plane with an angular speedT. 

 

(a) Find an expression for the magnitude of the system’s angular momentum L. 

Solution  

Ignore any movement of arms or legs of the father and daughter and model them both as 

particles. The system is therefore modeled as a rigid object. The moment of inertia of the 

system equals the sum of the moments of inertia of the three components: the seesaw and the 

two individuals. We will use the moment of inertia of the rod calculated to the horizontal axis 

passing through the center 2

12

1
MlI =  and for each person  2mrI =  , (2 = � 2i ). 
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The total momentum is then: 

22
2

2212

1







+






+= l
m

l
mMlI df  

The magnitude of the angular momentum L of 

 the system is then  

ωω 






 ++== df mm
Ml

IL
34

2

 
 

Fig. 7.6 Seesaw 

(b) Find an expression for the magnitude of the angular acceleration α of the system when 

the seesaw makes an angle θ with the horizontal.  

Solution 

Generally, fathers are more massive than daughters, so the system is not in equilibrium and 

has an angular acceleration. We identify the system as non-isolated because of the external 

torque associated with the gravitational force, the axis of rotation to be z-axis. To find the 

angular acceleration of the system at any angle, we first calculate the net torque on the system 

and then use ατ Iext =∑  from the rigid object under a net torque model to obtain an 

expression for α . 

θτ cos
2

l
gmff =  

θτ cos
2

l
gmdd −=  

( ) θτττ cos
2

1
glmm dfdfext −=+=  

And hence  
( )








 ++

−
== ∑

df

dfext

mm
M

l

gmm

I

3

cos2 θτ
α  

EXAMPLE 7.12 A star rotates with a period of 30 days about an axis through its center. The 

period is the time interval required for a point on the star’s equator to make one complete 

revolution around the axis of rotation. After the star undergoes a supernova explosion, the 

stellar core, which had a radius of 104 km, collapses into a neutron star of radius 3.0 km. 

Determine the period of rotation of the neutron star. 

Solution  

Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) 

it remains spherical with the same relative mass distribution, and (3) its mass remains 
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constant. We consider the star as an isolated system in terms of angular momentum. We do 

not know the mass distribution of the star, but we have assumed the distribution is symmetric, 

so the moment of inertia can be expressed as kMR2, where k is some numerical constant. 

(k =2/5  for a solid sphere and  k = 2/3  for a spherical shell.) 

Let’s T is the period, with Ti being the initial period of the star and Tf being the period of the 

neutron star. The star’s angular speed is given by 
T

πω 2= . 

ffii II ωω =  

By substitution for ω  and I we get  












=









f
f

i
i T

kMR
T

kMR
ππ 22 22

 

Hence:

 

  

using the given numbers we get   s23.0=fT  

 

EXAMPLE 7.13 Steel wire, length of 20 cm was bent at a right angle such that the sides of 

the wire are the same size and are oriented in the x, y axis direction. Bending point is identical 

to the beginning of the coordinate system. Determine the center of mass of the bent wire in 

the given coordinate system. (2, 5 cm; 2, 5 cm; 0 cm) 

 

EXAMPLE 7.14 The system of bodies is formed by two spheres of different mass m1 = 3 kg 

and m2 = 12 kg. If you know that the first sphere moves with the speed 1 5m/sv =  and the other 

is at rest, determine the speed of movement of the center of mass of the system. (v = 1m/s) 

 

EXAMPLE 7.15 You have been asked to hang a metal sign from a single vertical string. The 

sign has the triangular shape shown in Figure 7.7.  

i
i

f
f T

R

R
T

2









=
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Fig.7.7 Hanging metal sign. 

 

The bottom of the sign is to be parallel to the ground. At what distance from the left end of 

the sign should you attach the support string? (@�Ö = �d �) 

EXAMPLE 7.16 A 1500-kg car traveling east with a speed of 25.0 m/s collides at an 

intersection with a 2500-kg truck traveling north at a speed of 20.0 m/s as shown in Fig.7.8.  

 

Find the direction and magnitude of the velocity of 

the wreckage after the collision, assuming the 

vehicles stick together after the collision. 

 (v =15.6 m s-1, 5 = 53.1°) 
  

Fig.7.8 Cars’ collision 
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8 EQUILIBRIUM AND ELASTICITY 

Real materials are not perfectly rigid. When subjected to forces, they deform. If a substance 

deforms when subjected to a force, but returns to its initial shape when the force is removed, 

the substance is elastic. 

The stress applied to a material is the force per unit area applied to the material: 

F/A=Stress  

It is measured in Nm-2 or pascals (Pa) 

Strain is the ratio of extension to original length, it has no units as it is a ratio of two lengths 

measured in metres. 

LL /Strain ∆=  

An elastic modulus, or modulus of elasticity, is a number that measures an object or 

substance's resistance to being deformed elastically (i.e., non-permanently) when a force is 

applied to it. 

Elastic modulus ( ) ( )strainstress/=   

Tensile stress (or tension) is the stress state leading to expansion. The volume of the material 

stays constant. When equal and opposite forces are applied on a body, then the stress due to 

this force is called tensile stress. Young’s modulus E is defined as : 

LL
AF

straintensile
stresstensileE

/
/

∆
==  ,      the SI unit is Pa 

The shear modulus describes an object's tendency to shear (the deformation of shape at 

constant volume) when acted upon by opposing forces. Suppose a piece of material, in the 

form of a rectangular block (like a brick), has one face fixed and a force F applied to the 

opposite face, of area A. If the two faces are separated by distance h and the sheared face 

moves ∆x, the shear modulus is defined: 

hx
AF

strainsheer
stressshear

S
/

/
∆

==  ,         the SI unit is Pa 

The bulk modulus B describes volumetric elasticity, or the tendency of an object to deform in 

all directions when uniformly loaded in all directions; it is defined as volumetric stress over 
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volumetric strain, and is the inverse of compressibility. The bulk modulus is an extension of 

Young's modulus to three dimensions. 

VV

p

VV

AF

strainvolume

stressvolume
B

//

/

∆
−=

∆
−== ,      the SI unit is Pa 

The negative sign is inserted so that B is a positive number because ∆V is negative due to a 

positive pressure. In some tables of data the inverse of B, called the compressibility, is 

tabulated. A large bulk modulus means that it is difficult to compress the material, whereas a 

large compressibility means, that it is easy to compress the material. 

 

EXAMPLE 8.1 Place a 7.0 m uniform, 150 N ladder against a frictionless wall at an angle of 

75°. What are the reaction forces at the ground and wall and the minimum coefficient of 

friction of the ground? 

Solution. Figure 8.1 shows the ladder with the 150 N acting down at the center of the ladder 

and the sides of the triangle formed by the ladder, wall, and ground.  

 
Fig.8.1 Free body diagram 

0=∑ xF ;  HH RF =  

0=∑ YF ;  NFV 150=  

∑ =0τ ; the torque on the ladder is taken about the point where the ladder contacts the 

ground. This choice eliminates two variables from torque statement. As torque is the 

component of the force at right angles to the lever arm times that lever arm. 

Hence 

( ) ( ) m0,715cosm5.375cos150 °=° HRN  

As: HH RF =  and VH FF µ=  

19.0=µ  
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EXAMPLE 8.2 To moor a ship, a sailor wraps a rope around a bollard (a cylindrical post). By 

pulling with a small force T1, he can control a much larger tension T2 on the end of the rope 

attached to the ship because of the friction between the rope and the bollard. The coefficient 

of friction between the rope and the bollard is µ = 0.2. If the sailor pulls with 400 N, how 

many turns are needed if he is to exert a force of 24,000 N on the ship? 

 

  
 

Fig.8.2 The bollard and the free body diagram 

Solution 

If we look at a small segment of rope that subtends a small angle dθ. Because of friction the 

tension at one end is T and at the other end slightly larger, T + dT. Applying  ∑ {� = 0: 

� ( S sin!d5 2⁄ $ ( !S � dS$ sin!d5 2⁄ $ � 0 

Using small angle approximation  sin!d5 2⁄ $~ d5 2⁄  and neglecting the very small term 

dS d5 2⁄  gives:   � � Sd5 

The friction force is:   {̈ � Á� � ÁSd5
 
 

Applying∑ {� � 0:        !S � dS$ cos!d5 2⁄ $ ( {̈ ( S cos!d5 2⁄ $ � 0 

Small angle approximation cos!d5 2⁄ $~ 1 gives: 

dS � {̈ � ÁSd5,    or    dS
S � Ád5 

If the tensions at the two ends are T1 and T2, then 

P dS
S

W9

W;
� Á P d5�9

�;
     or     ln S�Sc � Á!5� ( 5c$ 

!5� ( 5c$ � 1
 Á  ln S�Sc � 1

 0.2  ln 24,000
400 � 5 · ln60 � 20.5 rad 

20.5 rad
2� rad rev⁄ � 3.3 rev 
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In this way sailors control the ship, they can even slowly release it, and then the force on the 

other side will start to move. But you cannot lift things with it. The frictional forces for the 

rope will flip over. In other words, what is now T1 in our calculations will become T2.  

 

EXAMPLE 8.3 To span the space architects used round (semicircular) arch and in about A.D. 

1100 the pointed arch came into use and became the hallmark of the great Gothic cathedrals. 

To make an accurate analysis of a stone arch is quite difficult in practice. But if we make 

some simplifying assumptions, we can show why the horizontal component of the force at the 

base is less for a pointed arch than for a round one. Figure 8.3 shows a round arch and a 

pointed arch, each with an 8 m span. The height of the round arch is thus 4.0 m. Pointed arch 

is larger and has been chosen to be 8.0 m. Each arch supports a weight of 12.0·104 N 

Calculate the horizontal force for each arch. 

 

 

 

Fig.8.3 Forces in round (a) and pointed (b) arch 

Solution  

For simplicity let us divide the arches into two parts (each 6·104 N). For the arch to be in 

equilibrium, each of the supports must exert an upward force of 6·104 N. Each support also 

exerts a horizontal force, FH, at the base of the arch, and it is this we want to calculate. We 

focus only on the right half of each arch. We set equal to zero the total torque calculated about 

the apex of the arch due to the forces exerted on that half arch, as if there were a hinge at the 

apex. 

For the round arch, the torque equation  ∑ Ý � 0,  is as follows: 

!4 m$!6 · 10\ N$ ( !2 m$!6 · 10\ N$ ( !4 m$!¥ï$ � 0 

Thus FH = 3 · 10\ N for the round arch.  
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For the pointed arch, the torque equation is: 

!4 m$!6 ∙ 10\ N$ − !2 m$!6 ∙ 10\ N$ − !8 m$!¥ï$ = 0 

For the pointed arch we get FH = 1,5 ∙ 10\ N and this is only half as much as for the round 

arch.  

 

EXAMPLE 8.4 The Leaning Tower of Pisa is 55 m tall and about 7.0 m in diameter. The top 

is 4.5 m off center. Is the tower in stable equilibrium? If so, how much farther can it lean 

before it becomes unstable? Assume the tower is of uniform composition. 

Solution 

We know that an object whose center of gravity-CG is above its base of support will be stable 

if a vertical line projected downward from the CG falls within the base of support. For the 

tower, the base of support is a circle of radius 3.5 m. If the top is 4.5 m off center, then the 

CG will be 2.25 m off center, and a vertical line downward from the CG will be 2.25 m from 

the center of the base. Thus the tower is in stable equilibrium. 

To be unstable, the CG has to be more than 3.5 m off center, and thus the top must be more 

than 7.0 m off center. Thus the top will have to lean 2.5 m further to reach the verge of 

instability. 

 

EXAMPLE 8.5 Four bricks arc to be stacked at the edge of a table, each brick overhanging 

the one below it, so that the top brick extends as far as possible beyond the edge of the table. 

(a) To achieve this, show that successive bricks must extend no more than (starting at the top) 

1/2, 1/4, 1/6, and 1/8 of their length beyond the one below (Fig. 8.7). (b) Is the top brick 

completely beyond the base? (c) Determine a general formula for the maximum total distance 

spanned by n bricks if they are to remain stable, (d) A builder wants to construct a corbeled 

arch based on the principle of stability discussed in (a) and (c) above. What minimum number 

of bricks, each 0.30 m long, is needed if the arch is to span 1.0 m? 

Solution 

(a) The maximum distance for the first brick (1) to remain on the second brick will be 

when the CM of the first brick will be directly over the edge of the second brick. We 

get x1 = L/2 
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Fig.8.4 Maximum span for 2 bricks 
 

Fig.8.5 Maximum span for 3 bricks 

 

The maximum distance for the top two bricks to remain on the third brick will be reached 

when the center of mass of the top two bricks is directly over the edge of the third brick. The 

CM of the top two bricks is in the middle of their CM`s and it means L/4 from the right edge 

of the second brick. Thus x2 = L/4.  

Notice that each time the x-coordinate of CM of upper n bricks is over the edge of the 

brick number (n+1) or the base. 

So the maximum distance for the top three bricks to remain on the brick number 4 will be 

reached when the center of mass of the top three bricks is directly over the edge of brick 

number 4. The CM of the top three bricks is found relative to the center of brick 3 by: 

CMd = w·La�·w·!¢/�$
dw � �/3,     or L/6 from the right edge of the brick 3.    So   x3 = L/6,  

where m is the mass of one brick.   

 

Fig.8.6 Maximum span for 4 bricks      Fig.8.7 Maximum span for 4 bricks over the edge of the table 

 
For four bricks to remain on the table, the CM of the four bricks has to be directly over the 

edge of the table. The CM found relative to the center of brick 4 will be: 

CM\ � w·Lad·w·!¢/�$
\w � 3�/8,  or L/8 from the right edge of the brick 4 and  x4 = L/8.  

From the results above, the distance from the edge of the table to the right edge of brick 1 is: 

x4 + x3 + x2 + xl = (L/8) + (L/6) + (L/4) + (L/2) = 25L/24 > L 

Since this distance is greater than L, the first brick is completely beyond the edge of the table. 

(c) The x-coordinate of CM of n bricks relative to the center of brick number n can be 

according to previous explanation calculated as: 

CMâ � } · 0 � !ò ( 1$ · } · !�/2$
ò · } � � ò ( 1

2 · ò  
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So the span xi is:   @§ = ¢� − CMò = ¢� − � â:c�∙â = � â:!â:c$�∙â = � c�∙â 

The general formula for the total distance spanned by n bricks over an edge is: 

@c +  @� + @d +∙∙∙∙∙∙∙ +@â = ó¢�ô + ó¢\ô + ó¢̀ô +∙∙∙∙∙∙ ó ¢�âô = ∑ ¢�§â§õc = ¢� ∑ c§â§õc   

We got so called harmonic series.  

(d)The arch is to span 1.0 m, so the span from one side will be 0.50 m. We have to solve 

ª �2ö
â

§õc
= ª 0.32ö

â
§õc

≥ 0.5 

Tab. 8.1 Partial sums of foregoing harmonic series 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Σ 0,15 0,225 0,275 0,313 0,343 0,368 0,389 0,408 0,424 0,439 0,453 0,465 0,477 0,488 0,498 0,507 

 

The table of partial sums of this harmonic series which we calculated for  L = 0.3 and  i = 1 to 16. 

Evaluation of this table shows that 15 bricks will span the distance of 0.498 m and 16 bricks 

will span a distance of 0.507 m. Therefore we have to take 16 bricks for each half-span, plus 1 

brick as the base on each side, which means the total of 34 bricks. 

 

EXAMPLE 8.6 A steel beam used in the construction of a bridge is 10.2 m long with a cross-

sectional area A of 0.12 m2. It is mounted between two concrete abutments with no room for 

expansion. When the temperature raises 10º C, such a beam will expand in length by 1.2 mm 

if it is free to do so. What force must be exerted by the concrete to keep this expansion from 

happening? Young’s modulus for steel is 2∙1011 N/m2. 

Solution 

{ = ø sΔ�� t � = !2 ∙ 10cc N/m2$ ú1.2 ∙ 10:d m10.2 m û !0.12 m�$ = 2.8 ∙ 10` N 

This force will crack the concrete. The forces involved in thermal expansion can be huge, 

which is why it is necessary to leave expansion space in joints in large structures like bridges 

and buildings. And to make dilatation arcs in long tubes for heating, cooling etc. 

EXAMPLE 8.7 Is the Young’s Modulus for a bungee cord smaller or larger than that for the 
ordinary rope? 
Solution 
The Young's modulus for a bungee cord is much smaller than that for ordinary rope. The 
bungee cord stretches relatively easily, compared to ordinary rope. From the equation 

LL
AF

E
/

/
∆

=  we can see that the value of Young's modulus is inversely proportional to the 

relative change in length of a material under a tension. Since the change in length of a bungee 
cord is much larger than that of an ordinary rope if other conditions are identical (stressing 
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force, unstretched length, cross-sectional area of rope or cord), it must have a smaller Young's 
modulus. 
 
EXAMPLE 8.8 A certain person’s biceps muscle has a maximum cross-sectional area of 12 

cm2. What is the stress in the muscle if it exerts a force of 300 N? (2.5∙105 N/m2) 

 

EXAMPLE 8.9 A 500 kg mass is hung from a 3 m steel wire with a cross-sectional area of 

0.15 cm2. How much does the wire stretch? Neglect the mass of the wire. (0.44 cm for 

ø = !2 ∙ 10cc N/m2$  

 

EXAMPLE 8.10 A cube of Jello 6 cm on a side sits on your plate. You exert a horizontal 

force of 0.20 N on the top surface parallel to the surface and observe a sideways displacement 

of 5 mm. What is the shear modulus of the Jello? (670 N/m2) 

 

EXAMPLE 8.11 A marble column of cross-sectional area 1.2 m2 supports a mass 25 000 kg. 
Young’s Modulus of marble is  5 ∙ 10cL Pa . (a) What is the stress within the column? (b) 
What is the strain? (2 ∙ 10b Pa ; 4.1 ∙ 10:` ) 
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9 FLUID MECHANICS 

Fluids are liquids or gasses. Fluids can be compressible or incompressible. This is the big 

difference between liquids and gases, because ideal liquids are generally incompressible and 

without inner friction, while ideal gases are compressible and without inner friction. We can 

divide the fluid mechanics into hydrostatics and hydrodynamics. When talking about 

hydrostatics we can consider liquids to be ideal as inner frictions plays role only by liquid 

flow. 

Fluids at rest – hydrostatics 

Pressure p is defined as force per unit area, where the force F is understood to be acting 

perpendicular to the surface area A:   p = F/A 

The SI unit of pressure is N/m2 which has the name Pascal (Pa); 1 Pa = 1 N/m2 . 

An experimental fact is that fluid exerts a pressure in all directions. Another important 

property of fluid at rest is that the force due to fluid pressure always acts perpendicularly to 

any surface which is in contact with it. 

Hence the pressure p is defined as    

  ý = { � = ��Nℎ � =⁄⁄ �Nℎ   

This equation tells us what the pressure is at depth h in the liquid due to the liquid itself. In an 

open container the pressure in depth h is: 

   ý = ýL + �Nℎ  

In this equation we have the pressure p0 due to the atmosphere above the liquid surface plus 

the pressure of the liquid in depth h. 

Pascal's law states that when there is an increase in pressure at any point in a confined fluid, 

there is an equal increase at every other point in the container.  

Archimedes' principle: Any object, wholly or partially immersed in fluid, is buoyed up by 

force equal to the weight of the fluid displaced by the object. 

Surface tension γ  : The surface of liquid acts like it is under tension, and this tension, acting 

parallel to the surface, arises from the attractive force between the molecules.  

 This effect is caused by so called surface tension γ . It is defined as the force F per unit 

length that acts across any line in a surface;  

lF=γ   The unit of the surface tension is  [γ ] = N / m  
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Fluids in motion - hydrodynamics 

Fluids display properties such as: not resisting deformation, or resisting it only lightly 

(viscosity), and the ability to flow (also described as the ability to take on the shape of the 

container).This also means that all fluids have the property of fluidity. 

The equation of continuity: When fluid is in motion, it must move in such a way that the 

mass is conserved. The mass flow rate is simply the rate at which mass flows past a given 

point, so it's the total mass flowing past divided by the time interval  

 Av
t

lA
t
V

t
m ρρρ =

∆
∆=

∆
∆=

∆
∆

     

where  is the density, v is the velocity and A the cross sectional area. 

Generally, the density stays constant and then it's simply the flow rate (Av) that is constant. 

This is a statement of the principle of mass conservation for a steady, one-dimensional flow, 

with one inlet and one outlet. This equation is called the continuity equation for steady one-

dimensional flow. When there are many inlets and outlets, the net mass flow must be zero.  

Bernoulli's equation: In steady flow of ideal fluid in gravitational field is the sum of kinetic 

and potential energy of unit volume and pressure along the line of current constant. 

 ( ) constphgv =++ ρρ 22/1     

In which the first member expresses the kinetic energy of unit volume, the second is potential 

energy of unit volume and p is pressure. This equation must have the same value at any point 

of the current tube.  

EXAMPLE 9.1 Atmospheric pressure in various heights.  

Solution 

The equation ý = ýL + �Nℎ deals with incompressible fluids, the air is compressible. Let us 

imagine an element of air of area A and height dh with density�, so its weight is �N�dℎ. The 

up-force on the element from below is ý� and the down-force is !ý + dý$� + �N�dℎ. At the 

hydrostatic balance: 

ý� − !ý + dý$� − �N�dℎ = 0 dýdℎ = −�N 

According to ideal gas law  � = ~ÖÂW  , where M = 0.02896 kg mol−1 is the middle molar mass 

of atmospheric gases, R = 8.314 J·K−1·mol−1 is the universal gas constant and T the absolute 

temperature. So: dýdℎ = −ý ÝN�S              þ2              dýý = − ÝN�S dℎ  

222111 AvAv ρρ =

ρ
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Integrating this equation among searching heights respectively pressures gives: 

P dýý
~!k$

~!k�$ = − P ÝN�S
k

k� dℎ = − ÝN�S P dℎk
k�  

assuming M, g, and T are constant, hence atmosphere is isotherm. This simplyfying gives: 

ln ú ý!¶$
ý!¶L$û � ( ÝN

�S !¶ ( ¶L$ � ( ÝN
�S ∆¶ 

ý!¶$
ý!¶L$ � �

:ÖlÂW ∆k   or   ý!¶$ � ý!¶L$�:ÖlÂW ∆k � 1013,25 �: ∆ke\d�  !hPa$ 

 

Fig. 9.1 Atmospheric air pressure vs altitude. 

Figure 9.1 shows that even this simple approximation gives good results for small altitudes. 

 

EXAMPLE 9.2 An iceberg floating in seawater is extremely dangerous because most of the 

ice is below the surface. This hidden ice can damage a ship that is still a considerable distance 

from the visible ice. What fraction of the iceberg lies below the water level?  

Solution  

The weight of the iceberg is ¡§ � �§Å§N, where �§ � 917 kg · m:d and Å§ is the volume of the 

whole iceberg. The magnitude of the upward buoyant force equals the weight of the displaced 

water {Ó � ��Å�N where Å�, the volume of the displaced water, is equal to the volume of the 

ice beneath the water and �� � 1030 kg · m:d is the density of the seawater. Because 

�§Å§N � ��Å�N, the fraction f of ice beneath the water`s surface is 

È � Å�Å§ � �§
��

� 917 kg · m:d
1030 kg · m:d 

È � 0.89  or  89 %. 
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EXAMPLE 9.3 A cube of wood having a side dimension a = 20.0 cm and a density �¯��®= 

650 kg/m3 floats on water, (a) What is the distance d from the horizontal top surface of the 

cube to the water level? (b) How much lead weight must be placed on top of the cube so that 

its top is just level with the water? 

Solution 

 (a) 

}¯��® = Å̄ ��® · �¯��® � �d · �¯��® � 5.2 kg 

{��­� � }¯��®  · N 

��p<®� · Å	§°~� · N � }¯��® · N 

Å	§°~� � }¯��®
��p<®� � ��!� ( ¬$  

 

 

Fig.9.2 Cube on water 

 

¬ � � ( }¯��®����p<®� � 0.2 m ( 5.2 kg
0.04 m� · 1000 kg m:d � 0.07 m 

 

(b) The mass }<­ p		 must be equal to the extra buoyant force we would get from 

submerging the part of the cube currently above water 

 

}<­ p		 · N �  ��p<®� · Åp�­>® �p<®� · N 

}<­ p		 �  ��p<®� · Åp�­>® �p<®� � 1000 kg m:d · 0.07 · 0.2 · 0.2 md � 2.8 kg 

 

EXAMPLE 9.4 A large storage tank is filled to a height h0. The tank is punctured at a height h 

above the bottom of the tank. Find an expression for (a) how far from the tank the exiting 

stream lands and (b) the maximum for it 

(a) The Bernoulli`s principle for fluid at height h in the tank and after the hole 

 

ýp � �N!¶L ( ¶$ � �8L�2 � ýp � 0 � �8�
2     

8 � �2N!¶L ( ¶$ 

 

 
Fig.9.3 A tank filled to a height h0 
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We neglected 8L → 0 since the tank diameter is much greater than the whole diameter. This is 

the Torricelli`s equation relating the speed of fluid flowing out of an opening to the height of 

fluid above the opening. 

 The fluid after the opening behaves as the horizontal projectile motion: 

@ = 8C,       ℎ = NC�
2 , or   C = �2ℎN  

 

Using the Torricelli`s equation and the expression for t we receive: 

@ = 8C = �2N!ℎL − ℎ$�2ℎN = 2�!ℎL − ℎ$ℎ 

(b) An extreme of this function we find by derivation x according to h: 

¬@¬ℎ = ¬¬ℎ ó2�!ℎL − ℎ$ℎô = 2!1 2⁄ $
�!ℎL − ℎ$ℎ !−ℎ + ℎL − ℎ$ = ℎL − 2ℎ�!ℎL − ℎ$ℎ 

So     ℎL − 2ℎ = 0,   or   ℎ = ℎL/2.  

The stream receives the maximal distance from the tank when the opening is in the middle of 

the fluid height. 

 

EXAMPLE 9.5 In humans, blood flows from the heart into aorta, from which it passes into 

the major arteries. These branch into small arteries, which in turn branch into myriads of 

capillaries. The blood then returns through veins to the heart. The radius of aorta is about 

1.2 cm, and the blood passing through it has a speed of about 40 cm/s. A typical capillary has 

a radius of about 4 ∙ 10:\ cm, and blood flows through it at a speed of about 5 ∙ 10:\ m/s. 

Estimate the number of capillaries in a body. 

Solution  

We assume the density of blood is constant. By equation of continuity, the volume flow rate 

in the aorta must equal the volume flow rate through all the capillaries. The total area of all 

capillaries is given by the area of one capillary multiplied by the total number N of capillaries. 

Let �pbe the area of the aorta and �|¯ the area of all N capillaries. Then �|¯ = ��2̄�. From 

the equation of continuity we have 

8¯�|¯ = 8p�p     or    8¯��2̄� = 8p�2p� 

 So  

 � = 8p8¯
2p�2̄� = s 0.4 m/s5 ∙ 10:\ m/st ú1,2 ∙ 10:�m 4 ∙ 10:`m û� ~7 ∙ 10f 
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There are approximately 10 billion capillaries in the human body. 

 

EXAMPLE 9.6 Water circulates throughout a house in a warm–water heating system. If the 

water is pumped at a speed of 0.5 m/s through a 4 cm diameter pipe in basement under 

a pressure of 300 kPa, what will be the flow speed and pressure in a 2.6 cm–diameter pipe on 

the second floor 5 m above? Assume the pipes do not divide into branches. 

Solution  

ýc = 3 ∙ 10b Pa,           Ac = 0,         8c = 0.5 m/s,          A� = ℎ = 5 m  
8c�c = 8���   →   8� =  8c �c�� = 0.5 � 0.02�

� 0.013� = 1.18 m/s 

ýc + �NAc + �8c�2 = ý� + �NA� + �8��2  

ý� = ýc + �NAc + �8c�2 − �8��2 − �NA� = 

3 ∙ 10b + 0 + 10002 !0.5� − 1.18�$ − 1000 ∙ 9.8 ∙ 5 = 2.5 ∙ 10b Pa 

EXAMPLE 9.7 A piece of aluminum with mass 1.00 kg and density 2 700 kg/m3 is suspended 

from a string and then completely immersed in a container of water .Calculate the tension in 

the string (a) before and (b) after the metal is immersed. The density of water is 1 000 kg/m3. 

((a) 9. 61 N, (b) 6.17 N) 

 

EXAMPLE 9.8 Consider 2 identical pails of water filled to the brim. One pail contains only 

water, the other has a piece of wood floating on it. Which pail has the greater weight? 

Solution  

The buoyant force on the wood object equals the weight of the wood object (static 

equilibrium). Also the buoyant force is equal to the weight of the displaced water 

(Archimedes’ principle). In other words, the weight of wood is the same as the weight of the 

spilled water. Therefore, putting the wood does not change the weight of the pail. 

 

EXAMPLE 9.9 Water flows through a fire hose of diameter 6.33 cm at a rate of 0.012 m 3 /s. 

The fire hose ends in a nozzle with an inner diameter of 2.20 cm. What is the speed at 

which the water exits the nozzle? (31.6 m/s) 

 

EXAMPLE 9.10 A 70 kg ancient statue lies at the bottom of the sea. Its volume is 

 3 ∙ 10\ cm3. How much force is needed to lift it? (392.4 N) 
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