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1 INTRODUCTION

Science is beautiful when it makes simple explamatiof phenomena or connections between
different observations. Examples include the doui®éx in biology and the fundamental
equations of physic§tephen Hawking

There is no science in this world like physics. INlogy comes close to the precision with
which physics enables you to understand the waddral you. It's the laws of physics that
allow us to say exactly what time the sun is gdimgise. What time the eclipse is going to

begin. What time the eclipse is going to eNdil deGrasse Tyson

It is wrong to think that the task of physics isfied out how Nature is. Physics concerns

what we say about Naturdiels Bohr

Learn from yesterday, live for today, hope for terow. The important thing is to not stop
questioningAlbert Einstein

In the beginning there was nothing, which explodesry Pratchett

Physics is the science from life and for life. There you study the more you get intrigued. |

wish the readers to become fascinated by the werilgysics work withThe author

| would like to express my deepest thanks to pRNDr. Ivan Banik, PhD. andssoc. prof.
RNDr. FrantiSekCulik, PhD, who have very kindly read and reread th@nuscript and
helped me with their remarks and advices. The lgaalr departmenassoc. profRNDr.
Jozefa Lukowiova PhD was supporting me with whatever was neededy thanks for that.
My cordial thanks belong to all my children (Pav@abriela, Lucia, Jana and Jan) my
daughter in law Beata, my grandsons Tomas and Dawdson in law Juraj and my mother
for their understanding me being busy for suchng lbme. But above all, there was the help

and the support of my husband, there are no woedsltl express how thankful | am.



2 SCALARS AND VECTORS

In physics, there are quantities that are desctilyea single number, for example, the mass of
a person. Such quantities are called scalars. thersowe need more than one number — these
are e.g. vectors. A vector quantity is one thatlhath a magnitude and a direction. Examples
of vectors are displacement, velocity, acceleratiorce, and linear momentum. A vector may
be represented geometrically by an arrow of lepgtiportional to its magnitude, pointing in
the assigned direction. For graphical represemtat® use Cartesian coordinate system. In

this textbook we will usa (bold, italic) to asign a vector arad to assign the magnitude of

a vector.

ADDING VECTORS

When you add scalars, five and four, for examgplen there is only one answer that is
nine. When you have two vectors and no informatiortheir direction, but you know that the
magnitude of one is four and the magnitude of theris five, then the magnitude of the sum
could be nine, if they are both in the same dioectr it could be one, if they are in opposite
directions (these are the extremes). And you hageamhole range of possibilities if you do
not know the direction. So adding vectors is mamglicated. Choose any of the vectors to
be summed and draw it as an arrow in the corregction and of the correct length-
remember to put an arrowhead on the end to deteowdirection. Take the next vector and
draw it as an arrow starting from the arrowheatheffirst vector in the correct direction and
of the correct length. Continue until you have dnaaach vector- each time starting from the
head of the previous vector. In this way, the viecto be added are drawn one after the other
tail-to-head. Therefore this is sometimes calledl-to-head methodfor adding vectors (any
number of vectors). The resultant is then the wedtawn from the tail of the first vector to
the head of the last. Its magnitude can be detewinfrom the length of its arrow using the
scale. Its direction can be determined from thedeschagram, too. Another method is
sometimes callegarallelogram. In the parallelogram method for vector additithe vectors

are translated (i.e., moved) to a common originthedarallelogram is constructed.

E.g.a+b=c



A
Fig.2.1 Tail to head method Fig.2.2 Parallelogram

UNIT VECTORS

Vector quantities are often expressed in termsurof vectors. A unit vector is a
dimensionless vector having a magnitude of exattlyJnit vectors are used to specify a
given direction and have no other physical sigaiice. We use the symbalsj, k to
represent unit vectors pointing in the positkyg, andz directions of the Cartesian coordinate
system and so the unit vectorg k form a set of mutually perpendicular vectors.
Unit vector of any vector is usually signed withrazéndex a® and so the vectoa with
magnitudea can be written in the following way:

a=aa’

THE VECTOR COMPONENTS
In two dimensions the vector components are asvisli
a, =acosa, a,= asina

a= (ax, ay) = ayl+ayj

The magnitude of vectora: 0 i <
a=lal=,a?+ay,® and tana=a,/a, Fig.2.3 Vector components.

In three dimensions:a = (a,, ay,a,) = a,i + a,j + a,k

a = lal = /a,?® +a,? + a,?

VECTOR MULTIPLICATION

There are several ways of multiplying vectors. Téason for this diversity is that in
forming the "product” of two vectors, we must takéo account both their magnitudes and
their directions. Depending on how we combine thgsantities, we obtain different kinds of
products. The two most important kinds of produamts the scalar product and the vector

product.



THE SCALAR PRODUCT OF VECTORS (also called the dot product) is the scalar
defined as

a-b=abcosg = axby + a,b, +a,b,

¢ Is the angle betweeamandb, and it is between 0° and 180°, amd are the magnitudes of
the vectorsr andb.
The scalar product of two vectas

a-a=aacos0=a®=a;+a;+a;

Interesting is the scalar product of two unit vestrd.

Assigning angles between vectoand vectors, j, kK as«, Z,  we can write vectoa and
unit vectora® as follows:a = a(icos a + j cos § +k cosy), cosa, cos 3, cosy are called

direction cosines.

k
a‘ﬁ
0 Jj y

i
X

Fig.2.4 Vector components.

a®-a® = (icosa + jcosf +kcosy) - (icosa + j cos f +kcosy)

= cos? a + cos? B +cos?y =1
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THE VECTOR PRODUCT (also called the cross product), defined as

c=axbhb

c=axb=-bxa= (absing)c®
wherea andb are vectors' magnitudes of vect@sh, and ¢ is
angle between these vectdys < 180°). The resultant of vector c’

product is a vector with magnitude given in theckeds.

The vectorc is perpendicular to the plane of the vectoendb.

Its direction is in the direction of the unit vectd, given bythe V —c=bXxa

right-hand rule or right-handed screw. Fig.2.5 The vector product

EXAMPLE 2.1 A woman walks 250 m in the directior®3fast of north, then 175 m directly
east.

(a) Using graphical methods, find her final displaent

from the starting point. a

(b) Compare the magnitude of her displacement thi¢h a+b

distance she walked.

Fig.2.6 Adding vectors

Solution (a) Draw the first vect@with a length, to scale, of 250 m, 30° east ofmand the
second vectob with a length, to the same scale, of 175 m, dus. €Ehe order is not
important but the tail of one vector must be athibad of the other. Now draw the resultant
vectorr, from the tail of the first to the head of the @ed. Use a rule to measure its length
and use the scale to find its magnitude. Use aguir to measure the angle it makes with
one of the cardinal compass directions. The madeitf the resultant i5370 m and the
resultant is 36° north of east.

(b) The magnitude of her displacement is 370 mdib&ance she walked is 250 m + 175 m =
425 m.

EXAMPLE 2.2 (a) What is the sum in unit-vector raia of the two vectora = 4i + 3j and
b=-13 + 7j? (b) What is the magnitude and directioraof b?

Solution
(@ Let r=a+b.Thenry=a+by=4-13=-9 andy=ay+ by=3+7=10.
Thusr = -9 + 10.

Or r=a+b=(4i+3j)+ (—13i+ 7j) = —9i + 10j

11



(b) The magnitude of the resultantris= \/r.2 + 1,2 = \/(=9)2 + 102 = 13.45

The angleg between the resultant and the posikais is given by:

tanf =n,/1, = —10/9 = —1,1. Sod is either -48° or 132°. The first angle has atp@si
cosine and a negative sine while the second arggeahnegative cosine and positive sine.
Since thex component of the resultant is negative andytbemponent is positive), = 132°.

Another approach: the resultant lies in the uppdfrlane, s@ = 132°.

EXAMPLE 2.3 A boat crossing a wide river moves wittspeed of 10 km/h relative to the
water. The water in the river has a uniform spdésllon/h due east relative to the Earth.
(a) If the boat heads due north, determine the vela@oity direction of the boat relative to
an observer standing on either bank. (11.2 km/I§ 2@&ast of north).
(b) If the boat travels with the same speed of 10 kreldtive to the river and is to travel
due north, what should its heading be, what w#! ¥ielocity of the boat relative to an
observer standing on either bank be? (30° wesbxdhn8.66 km/h).

EXAMPLE 2.4 A car travels 20.0 km due north ahdrt 35.0 km in a direction 60.0° west
of north. Find the magnitude and direction of tla’s resultant displacement. (48.2 km,
38.99)

EXAMPLE 2.5 Three vectorgy with angle 28° with respect to (+) x axB with the angle
56° with respect to (-) x axis ar@lin the direction of (-) y axis. Magnitudés: 44.0,B= 26,5
and C= 31.0 are given in arbitrary units. Determine ghen of the three vectors. Give the
resultant in terms of (a) component8{8+C)x = 24; A+B+C),= 11.6 ) (b) magnitude and
angle with thex axis 6.7, 25.8)

EXAMPLE 2.6 The magnitude od is 2 and the magnitude bfis 8. What is the angle
between the vectoes b if |a X b| = 16 ? (90°)

EXAMPLE 2.7 The magnitude @& is 2 and the magnitude bfis 8 and the angle between

the vectors andb is 90°. Determine the magnitudeaf b. (0)

12



3 KINEMATICS

Kinematics is the study of motion. To describe motiwe must refer it to the frame of
reference. We often use a reference frame attatchéee surface of the earth or to the room
floor. The basic concepts involve understandingrieaning of displacement, velocity and
acceleration. These physical quantities are vectwwever considering the motion in one
dimension we are able to describe vector propesiraply by assigning a plus or minus sign
to them.

Summary of key equations for motion in one dimemsidinear motion.

Average velocity: V= % Average acceleration: @ = %
Instantaneous velocity: v = j—f Instantaneous acceleratian= % = ‘:—;
If a=constant, then: If a=0,then
vV = \ptat vV =Vp (constant)
X = Xg+vot+at?/ 2 X = Xo +Vt
V2 = Vot 2ax
For a freely falling object: An object dropped from rest will fall
a=-g a distancéd in timet where:
V= V- gt h =gt/ 2
y = Yo+ Vot - gt/ 2
Motion in plane or space.
v]
V2 V21

Fig.3.1 Motion in plane
For motion in plane or space we must use more @kpiotation to make clear the vector
properties. We specify the position of a particle tbe position vector r. As the particle

moves,r changes. If at tim& the position vector is; and velocityv;, and at timé; it is r;

13



and v,, the displacement vectorAr for this time interval is defined a& =r, - r;. The
velocity vector is directed tangent to the pathhaf particle. The acceleration vector can be
oriented in any direction, depending on what isgesing.

The position, velocity, and acceleration vectorsafgarticle moving in thg-y plane are:

r=xi +yj

_d _d N o_dx,  dy. .
V—dtr(t)—dt(xl+y])—dtl+ v Bl A Y I P 2

_d Cd, N dv, | dvy . .
a—av(t)—a(vxl+vy])—El+E]—axl+ay]—ax+ay

v _ & _dy _ @y

Qe =3 = arz Ay =4 = e

The magnitudes of these vectors are:

r=|r|=x?+y? v=|v|=vZ+v] a=la|l=.a%+a}

X — components y — components
a, = const a, = const
Uy = Vgy + Ayt Vy = Vgy + ayt
X = Xg+Vot + ayt?/2 Y = Yot+voyt + a,t?/2
vZ = v, + 2a,x vy = vy, + 2a,y

Projectile motion:

y ay =0 ay =—4g
w it :,2 — . _
Voln gl v, = Vg cos 8 = const vy =Vpsind — gt
r _ _
x = vt = vyt cosh y—fvydt—
6 x = votsin® — gt?/2

Fig. 3.2 Projectile motion

The position vector of a projectile consists of two parts. The vectgr would be the
displacement of the projectile if gravity was ahbseand the vectogt’2 is its vertical
displacement due to its downward gravitational Eredéion. So we can see that projectile
motion is the superposition of two motions: (1ps@nt-velocity motiongt in the direction

of the elevation anglé and (2) free-fall motiogt?/2 in the vertical direction.
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Circular motion - a point rotating in a plane about an axis perpernaido this plane. Let us
place the coordinate system beginning into theeceasftrotation. We describe the position of
the point by the position vectaor with magnituder and angled. The point moves with
peripheral speed = 2nr /T (T is period) and angular speed= df8/dt = v/r (in radians
per second), and — by non-uniform circular motiowith angular acceleration = dw/dt.
The component of the acceleration ve@othat is parallel or antiparallel io(that is, along
the line tangent to the path) is called taegential accelerationa;. A more descriptive name
is “speeding up or slowing down acceleration”. Tigishe kind of acceleration that measures
changes in speed. The other component of acceleratiways perpendicular &, is called
normal or radial accelerationa,. This radial acceleratioa has magnitude

a, = v?/r = wv = w?r
An object undergoing uniform circular motion is nmy with a constant speed. Nonetheless,

it is accelerating due to its change in directibme direction of the acceleration is inwards.

w=2?n=21'[f, v =21mr/T = wr If @ = const:
w=wy+at
£2
ar:vz/r:wv:wzr 8:90+a)0t+a?
2 _ 2
a, = dv/dt =d(wr)/dt =ra w® = wo” + Zat
a=a;+a,

Fig.3.3Acceleration
. a=|a|=\/at2+ar2=r\/a2+w4
components of circular

motion

Note the parallels between linear and circular arogquations.

EXAMPLE 3.1 An unidentified naval vessel is trackieg the Navistar Global Positioning
System. With respect to a coordinate origin (OfiX¥d at a lighthouse beacon, the position P
of the vessel is found to be =2.0 km easty; = 1.6 km north at; = 0.30 h anc, = 6.4 km
west,y, = 6.5 km north at; = 0.60 h. Using west-east as thaxis and south-north as the
axis, determine the average velocity in terms ®fcimponents. What are the direction and
magnitude of the average velocity in kilometers hpaur?

Solution

_ P;-P1 _ (—6.4i+6.5)—(2.0i+1.6)) _ (—8.4i+4.9j) km/h

ty—t; 0.6—0.3 0.3

v =|v| =(-84)2+4.92/0.3 =9.72/0.3 = 32.4 km/h
6 = tan"'(v,/v,) = tan"*(4.9/(—8.4)) = —30.3° 30.3° N of W

15



EXAMPLE 3.2 A motorcycle accelerates quickly froest, with an acceleration that has an
initial valueay = 4.0 m/$ att = 0 and decreases to zero during the intervalt0<5.0 s
accordingto a =a,(1—1t/5s). After t = 5.0 s, the motorcycle maintains a constant
velocity. What is this final velocity? In the praseof "getting up to speed,” how far does the
motorcycle travel?

Solution

The acceleratiom is given as an explicit function of time. Since ttmotorcycle accelerates

t t2
= t——
ol

from rest, the initial velocity igy = 0, sov as a function of is:

t t t t 1 t t2
=v,. +|adt =0+ 1-— |dt= dt—— |tdt | = t——
L B e A R

At t =5.0 s, this velocity reaches its final valuel6fm/s.

To obtain the distance traveled during the accetarawe must solve

t t t2 t t2 t2 t3 t t2 t3
X-X%X, = |vdt=|a|t——|dt=a, || t—— |dt=a,| ———— | =a,| ————
0 { {"( 105} °I( 10sj a"(z 305} {2 303}

0 0

35

30 —A(+2]0 _ 43
time dependence of a, v and x X=4(t72 - t°/30)
25

20

15

10 ///, v=4(t - t°/10)
5

0 — ; ; ‘ - a=4(1 - t/5)
0 1 2 tins 3 4 5

Fig. 3.4 Time dependence of a, v and x

Evaluating this expressiontat 5.0 s, we find X-Xo=33 m.

EXAMPLE 3.3 While standing in an elevator, you seacrew fall from the ceiling. The

ceiling is 3 m above the floor. (a) If the elevai®moving upward with a constant speed of
2.2 m/s, how long does it take for the screw tatet floor? (b) How long is the screw in the
air if the elevator starts from rest when the scfalls, and moves upward with a constant

acceleration o, = 4.0 m/4?

16



Solution
a) The position functions for the elevator flooxignd for screws. Let us choose the origin

to be the initial position of the floor, and desagm upward as the positive direction.
1 1
Xi = Xof :VOft+§aft2 Xs = Xos :V05t+§ast2

Initial conditions and the accelerations

Xor= 0 M, Vot = 2, 2 m/sa; = 0 m/$ Xos= h = 3m,vos = 2, 2 m/sas = -g
Substituting these values into the position funiwe get:

X = (2.2 m/s) xs= h+(2.2 m/s) - (1/2)gt2

. . . _ 2 _ 23m
Setx - Xs and solving fot gives: t= \/; = /—9.81m-s‘2 =0.78s

b) The elevator floor moves upward from rest withngtant acceleration. The initial
conditions are then:

Xof = 0, Vor = 0 m/sa = 4,0m/$ Xos= h=3mvs=0m/sag =g

Using the initial conditions to write the positiimctions for this case:

X =(U2)a t? x, =h-(1/2)gt’
Now substituting the values and setting x;=xs we get the value df

(1/2)a,t? = h-(1/2)gt? t= |22 066
gtar

Remark: The time in the air is independent of {eesl of the elevator, as long as the elevator
does not accelerate. If the elevator has acceberati you and the screw experience an
"perceived gravity" with acceleratiog’ = g + &. For the case in which the elevator
accelerates downward widg = —g, the time of fall becomes infinite and the screppears

weightless.

EXAMPLE 3.4 A ball is thrown straight up. Show thatspends as much time rising as it
does falling back to its starting point.

Solution

At the peak of its flight = 0. Thusy =vy - gt; = 0.

Rise time id1=vy/g

Elevation is given by y =Vt - 1/2gf assuming Yo = 0.

When the ball returns to its starting pomnt; O.

Thus y =0 =v¢t — 1/2¢gf, or

t = 24/g = 3. The total time in the air is twice the rise tirge,fall time = rise time.

17



EXAMPLE 3.5 A ball is thrown upward with speed 12snfrom the top of a building. How
much later must a second ball be dropped fromdh@esstarting point if it is to hit the ground
at the same time as the first ball? The initialif@s is 24 m above the ground.

Solution

The time for the first ball to reach the groundyjs’ = yo + vt — (1/2)gf. Lety = 0 at starting
point, so y = -h =-24 m at the ground.

Vo=12m/s

-24 = 0 + 12—(1/2)(9.8)t 4.9°-12-24=0 t=3.75so0r-1.30 s

The ball was thrown at= 0, so it hits the ground at a later timet at3.75 s.

The ball dropped from rest will require timgd reach the ground, where

h=(1/2)gt> t=%/2h/g=221

Thus the second ball should be dropped a fitater, whereAt=3.75s - 2.21s=1.54 s

EXAMPLE 3.6 A football is kicked at an angk =37.0° with a velocity of 20.0 m/s.
Calculate (a) the maximum height, (b) the timeraf¢l before the football hits the ground,
(c) how far away it hits the ground, (d) the vetgaiector at the maximum height, and (e) the
acceleration vector at maximum height.
Solution
Assume the ball leaves the foot at ground leved, ignore air resistance and rotation of the
ball. We decompose the initial velocity into itsigaonents

Vox = Vp €os 37.0° = (20.0m/s)(0.799) = 15.98 m/s

Voy = Vpsin 37.0° = (20.0 m/s)(0.602) = 12.04 m/s.
(a) We consider a time interval that begins justrathe football loses contact with the foot
until it reaches its maximum height. During thiméi interval, the acceleration is g downward.
At the maximum height, the velocity is horizontst, vy, = 0: and this occurs at a time given
by VWw=VWo—gt with v =0. So we get
t=wo/g=1.227 s.
Using the calculated time we get maximum height
y = Vot — 1/t = 7.35m.
(b) To find the time it takes for the ball to retuio the ground, we consider a different time
interval, starting at the moment the ball leavesftiot ¢ = 0, yo = 0) and ending just before
the ball touches the groung £ 0 again). In following equation we sg0 and alsoy = 0

(ground level):

18



Y =Yo+Wot-%eg
0=0+12.0-% 9.8t

There are two solutions= 0 (which corresponds to the initial poiys), and

t = Lm's_l~2_45 S

9.8ms=2
which is the total travel time of the football.

We can see that the time for the whole trip is d®ube time to reach the highest point. It
means the time upwards is the same as the time wdamde but only without the air
resistance.

(c) The total distance traveled in théirection equals:

X=Vot =(16.0m/s) (2.45s) =39.2 m.

(d) At the highest point, there is no vertical cament to the velocity. There is only the
horizontal component (which remains constant thihowg the flight), so/ = vox = v cos 37.0°
=16.0 m/s.

(e) The acceleration vector is the same at thedsigboint as it is throughout the flight, which
is 9.80 m/é downward. In this example we consider the footlallif it were a particle,
ignoring its rotation. We also neglected air resise, which is considerable on a rotating

football, so our results are not very accurate.

EXAMPLE 3.7 Imagine we are sitting upright in a daket which is moving at constant
speed. Then we throw a ball straight upward (fraam @wn point of view), while the car
continues to travel forward at constant speedr lfesistance is neglected, will the ball land
(a) behind the car, (b) in the car, or (c) in frohthe car?

Solution

We throw the ball straight up from our own referefiame with initial velocity,o. But when
viewed by someone on the ground, the ball also dmasnitial horizontal component of
velocity equal to the speed of the gar Thus, to a person on the ground, the ball wilbfe
the path of a projectile. The ball experiences wozontal acceleration, sgo will stay
constant and equal to the speed of the car. Abdldollows its arc, the car will be directly
under the ball all the time because they have dheeshorizontal velocity. When the ball falls

down, it will drop right into our hands.
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EXAMPLE 3.8 A military jet fighter plane flying at80 m/s pulls out of a vertical dive by
turning upward along a circular path of radius 80What is the acceleration of the plane?
Express the acceleration as a multiplg.of

Solution

v2_ (L80m/ s)?
r 860m

a= =37.7m/$=37.7m/é/gm/s = 3.8g

EXAMPLE 3.9 A ball tied to the end of a string 0.60in length rotates in a vertical circle
under the influence of gravity. When the string nsatie anglé = 20° with the vertical, the
ball has a speed of 1.5 m/s.

(a) Find the magnitude of the radial component of aredion at this instant.
Solution
v?  (1.5m/s)?

T T T 05m

(b) What is the magnitude of the tangential accelematibend = 20°?

= 4.5 ms™?

Solution
When the ball is at an angteto the vertical, it has a tangential accelerabbmmagnitude
g sin 8 (the component gf tangent to the circle). Therefore fat 20°,
a, = gsin20° = 3.4 ms™2
(c) Find the magnitude and direction of thaltaeicceleration at = 20°.
Solution

Becausa = & + & , the magnitude of atd =20° is

a=+a2+a?=+45%+342 = 56ms 2

If @ is the angle betweemnand the string, then
4
¢ =tan~?! (ﬂ) =tan~! (—) = 37°
ar

Note thata, a;, anda, all change in direction and magnitude as the tmaétes through the
circle. When the ball is at its lowest elevatigh= 0), a = 0 because there is no tangential
component ofy at this angle; als@, is a maximum becauseis a maximum. If the ball has
enough speed to reach its highest positidn=(180°), thena; is again zero bug, is a
minimum becausg is now a minimum. Finally, in the two horizontalgstions ¢ = 90° and

270°),a;= g anda, has a value between its minimum and maximum values

20



EXAMPLE 3.10

>

V(m/s)

Il Il Il -
0 0

Fig. 3.5 Graph: distance as a function of time Fig. 3.6 Graph: velocity as a function of time (to

be done by the reader)

Describe in words the motion of the object frono®10 s.

What is the instantaneous velocity of the obje¢hatfollowing timest = 1 s;t = 3 s?

What is the simple average of these two velocities?

What is the velocity for the entire interval?

Why are these two values different? Which is cdfrec

Graphically represent the relationship between cgloand time for the object described
above.

From your velocity versus time graph determinettial displacement of the object.

EXAMPLE 3.11

The graph below represents the motion of a movbjgab.

Where on the graph above is the object moving slogtly? (How do you know?)
Where on the graph above is the object speedingt@® do you know?)

Where on the graph above is the object slowing dofi#ow do you know?)

Where on the graph above is the object changiregiiin? (How do you know?)

XA C

A N

F

Fig. 3.7 Graph representing path of the motion
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EXAMPLE 3.12 Worksheet — free particle model — ¢ansacceleration

The problem v vs t graph Solution

1. A poorly tuned Yugo can (+)A
accelerate from rest to a speed of
28 m/s in 20 s. a) What is the

average acceleration of the car? t (s)
b) What distance does it travel |in

this time?

2. Att =0 a car has aspeed of 30 (+) A

m/s. After 6 s, its speed is 15 mys.

What is its average accelerationg
during this time interval? g

t(s)

3. A bear spies some Honey and (+) A
takes off from rest, accelerating
at a rate of 2.0 mislf the honey

is 10 m away, how fast will his
snout be going at the moment |of

ecstasy? ()

4. A bus moving at 20 m/$ € 0) | (+) A
slows at a rate of 4 m/s each

second. a) How long does it take

the bus to stop? b) How far does it
travel while braking?

5. A car whose initial speed is 30 (+) A
m/s slows uniformly to 10 m/s in

5 seconds. a) Determine the

acceleration of the car.

b) Determine the distance |it

travels in the 3rd second. (-)




6. A dog runs down his driveway (+) A
with an initial speed of 5 m/s-far

8 s, then uniformly increases his

dto 10 m/sin 5 s.
speedto 10 m/sin5s t(s)

a) What was his acceleration

during the 2nd part of the motion? (-)

B) How long is the driveway?

7. A physics student skies dowrn a (+) A

slope accelerating at a constant

2.0 m/g. If it takes her 15 s t0 & >
>

reach the bottom, what is the t(s)

length of the slope

8. A mountain goat starts a rock- (+) A
slide and the rocks crash down the

slope 100 m. If the rocks reach

the bottom in 5 s, what is
t(s)

its acceleration?

Fig. 3.8 Free patrticle worksheet

EXAMPLE 3.13 The track of a cosmic ray particle anphotographic emulsion is found
empirically to be described by the expression (3* — &)i + (5 — 8%)j . Determine the
velocity and accelerationv € (6t — 6)i + (— 32°)j, a= 6 + (— 989 j)

EXAMPLE 3.14 A motorist drives 120 km at 100 kminda20 km at 30 km/h. What is his
average speed for the trip? (75 km/h)

EXAMPLE 3.15 A motorist drives half an hour at 1&®/h and two hours at 80 km/h. What
is his average speed for the trip? (84 km/h)

EXAMPLE 3.16 A cheetah is the fastest land mammal ia can run at speeds of about 101

km/h for a period of perhaps 20 s. The next fagtest animal is an antelope, which can run

at about 88 km/h for a much longer time. Supposbkegtah is chasing an antelope, and both
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are running at top speed, (a) If the antelope h48 m head start, how long will it take the
cheetah to catch him, and how far will the chedtakel in this time? (b) What is the
maximum head start the antelope can have if thetahas to catch him within 20 s (at which
time the cheetah runs out of breath)? ((a) 631.%,2 m, (b) 116 m)

EXAMPLE 3.17 A typical jet fighter plane launcheain an aircraft carrier reaches a take-
off speed of 280 km/h in a launch distance of 95(a).Assuming constant acceleration,
calculate the acceleration in meters per secondH@w long does it take to launch the
fighter? ((a) 32.3 mf, (b) 2.4 s)

EXAMPLE 3.18 A motorist traveling 31 m/s passestatisnary motorcycle police officer.
2.5 s after the motorist passes, the police offstarts to move and accelerates in pursuit of
the speeding motorist. The motorcycle has constereleration of 3.6 nfis(a) How fast will
the police officer be traveling when he overtakes ¢ar? Draw curves afversust for both

the motorcycle and the car, takihg: 0 at the moment the car passes the stationdigepo
officer, (b) Suppose that for reasons of safety ghkceman does not exceed a maximum
speed of 45 m/s. How long will it then take himotgertake the car, and how far will he have
traveled? ((a) 83 m/s, (b) 25.6 s, 872 m)

EXAMPLE 3.19 Suppose that motion studies of a rursi®w that the maximum speed he
can maintain for a period of about 10 s is 12 rf/g1 a 100-m dash this runner accelerates
with constant acceleration until he reaches thigimam speed and then maintains this speed

for the rest of the race, what acceleration wilkdguire if his total time is 11 s? (2.25 A)/s

EXAMPLE 3.20 A typical jet liner lands at a speed1®0 m/s. While braking, it has an
acceleration of -5.2 nfls(a) How long does it take to come to a stop?\hjat is the
minimum length of the landing strip under theseditbons? ((a) 19.2 s, (b) 962 m)

EXAMPLE 3.21 On a 40 km bike ride a cyclist ridée fiirst 20 km at 20 km/h. What speed

is required for the final 20 km if the average spéar the trip is to be (a) 10 km/h? (b) 30
km/h? ((a) 6.7 km/h, (b) 60 km/h)
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4 DYNAMICS

Dynamics studies how forces influence motion. Dymams involved in understanding a
wide range of phenomena. The basic ideas needexfatieel as Newton’s laws of motion.
Newton’s first law: If the net external force F =tBen a = 0 and v = constant
The tendency of an object to maintain its stateest or of uniform motion in a straight line is
called inertia. As a result, Newton's first lawoisen called the law of inertia. Newton's first
law makes no distinction between an object at ae®t an object moving with constant
velocity. Whether an object is at rest or is moviaigh constant velocity depends on the
reference frame in which the object is observedefarence frame in which the law of inertia
holds exactly is called an inertial reference fraamel any reference frame moving with
constant velocity relative to an inertial refereffigane is also an inertial reference frame.
Newton’s second law: F=ma
Newton’s third law: If A exerts forcEag on B and B exerts fordeéga on A,

thenFag = -Fga

Equilibrium: If F = 0, thena = 0, and we can writéx=0F,=0,F,=0

EXAMPLE 4.1 Calculate the sum of two force vectacting on the small boat in Fig. 4.1.

Fig. 4.1 The sum of two force vectors Fig. 4.2 Decomposing of vectors

Solution

After decomposing these two vectors (Fig. 4.2) ae express the componentsFafandF,,

as follows:

F,=Fcoxa F, =F sina F,=F,cos8 F, =F,sing

whereF;, F, are the magnitudes of the vectdis F»,, respectively. As the ang)e has a
negative sign, the componefy, is negative and it points along the negatweaxis.
Components of the resultant force are given asuhe of the components of the foréesand
F2
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FRX = le + I:2x ! FRy = I:1y + I:2y

To find the magnitude of the resultant force, wee uke Pythagorean theorem, so
FR:‘\/ FR%X-I-FR?y

F
and for the angle which the forcé gz makes with the axis we usdang = —=~
Rx

EXAMPLE 4.2 Calculate the constant force actingizmmtally required to accelerate the
20 kg box of chocolate from rest to 0.5 m/s in(&istion is negligible).

Solution

There are three forces acting on the box. The fahywashing forcé-, exerted by the person,
the downward force of gravitlygand the upward forcéy exerted by the floor (which is the
reaction to the force of the cart pushing downhanftoor). The sum of both vertical forceég
andFy must be zero; if it did not the box would accelengertically.

So Fn=Fg=mg=196 N

Then the net force on the box is simply

To calculate how largé, must be, we first calculate the acceleration nesglii

So, the magnitude of the force exerted by the pensast beF, = ma=200025=5N

EXAMPLE 4.3 A box of chocolate massis being pulled by a person along the surface of a
table with a forceF,. The force is applied at an angle The friction is assumed to be
neglected. Calculate

a) the acceleration of the box,

b) the magnitude of the upward foreg exerted by the table on the box.

Solution Fe

We decompose all forces into components

F
Fp=(Fp cosa, Fy sina) Fq=(0, Mg Fn=(0,FN) Nﬂ yT

In the horizontak direction,Fy andF4 have zero

components, thus,, = may. So: Fq
q. — fpx _ fpcosa Fig.4.3 Free body diagram
x m m

In the vertical direction we have: m g = Fny + Fpy + Fgy.
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We knoway = 0 since the box does not move vertically. Then:

(Fny = Fy, Fj, = —mg, F,, = E,sina) 0=Fy+ E;sina—mg

And Fy =mg — E,sina

Notice thatFy is less tharFg. The ground does not push against the full weadithe box
since part of the pull force exerted by the pelisdan the upward direction.

EXAMPLE 4.4 Two boxes connected by a lightweightdcare resting on a table. The boxes
have massesy andm,. A horizontal force ofF, is applied to the right box as shown in
Fig.4.4 (friction is neglected). Find:

a ) the acceleration of boxes,

b) the tensiol in the cord.

m, m, ——»Fp | — - | ——» Fp

Fig.4.4 Force applied to two boxes ¢ mag meg
Fig. 4.5 Free body diagram
Solution
We draw the force diagram for each of the boxesc@feneglect the cord mass relative to the
mass of the boxes. The forEg acts on the bory; boxm, exerts a forcd on the connecting
cord and the cord exerts a fordeback on boxm, (the third law of motion). Because the cord
Is considered to be massless, the tension at eacls ¢he same. So the cord exerts a fdrce

on the boxm,. The acceleration of both boxes is the same.He®hbrizontal motion we have:

For boxmi: ma=F,—T, for boxm: mpa=T
— __ b
Hence ma=F,-ma a=
For the tensioif we have T =m a, or T=F-ma

EXAMPLE 4.5 Suppose the cord in previous problera iseavy rope of mass. Calculate
the acceleration of each box and the tension imdpe.

Solution

T, T, T, T4 Fo
my > . ] my —
cord m >

Fig.4.6 Free body diagram
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Since the cord has mass the productmawill not be zero, so the forces (tensions) atezith
end will not be the same. Therefoig — T, =m a

For boxm, we have: Fp—Ti=mya, for boxmy: To=mpa

We now have obtained three unknowns T, anda in three equations. The sum of all three

equations yieldsa = F,/(m + m; + m;).

+
Then TZ == mza = F 2 mrT,

pm and T1=Fp—m1a=F

P m+my+m,

EXAMPLE 4.6 Suppose two different boxes,(> my ) are placed with the cord joining
them hanging over a frictionless massless pulley dgyure bellow. We assume the cord is

massless. Calculate the acceleration of boxeshentkhsion in the cord.

Solution
T T
| []1.
a
n»g nmg

n» n

Fig. 4.7 Free body diagram
Since the cord is massless the tenslors the same at both ends. As is heavier, it
accelerates downward and box accelerates upward.
To find its value we write the second law of motfon each box, taking the upward direction
as positive T-mg=ma, T-mg=-ma
mp—ma

Solving these two equations we get= —

m2+m1 g
The tensionm we can get from either of the two equations above

T=@+am T=@-am

EXAMPLE 4.7 Here is a famous classic problem thdk nvake you think. A rope is passed
over a pulley suspended from a tree branch, anihlla of bananas is tied to one end. A
monkey hangs from the other end of the rope, aadrtass of the bananas and the monkey
are balanced. Now the monkey starts climbing updpe. What will happen to the bananas?
Will they stay in the same place, or will they mawe away from the ground, or will they

move down toward the ground?
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Solution

Look at the force diagram for the monkey. His weighg acts downward, and the rope
tensionT acts upward. If the monkey is to start moving upnf rest, he must accelerate
upward, which means there must be net upward factieg on him. The net upward force on
the monkey isT - mg But the tension is the same everywhere in a repéhe tension at the
end of the rope attached to the bananas is @Jsgreater thanmg Thus the bananas
experience the same upward force as does the moaikdyso the bananas will move up with
the same acceleration and velocity as the monketh ®ill move higher from the ground at
the same rate. The net upward force on the systade mp of the bananas plus the monkey is

provided by the pulley.

EXAMPLE 4.8 A person whose weight is 600 N standsadbathroom scale in an elevator.
What will the scale read when the elevator is (ayvimg up or down at constant speed? (b)
Accelerating up with acceleration 03 (c) Accelerating downward with acceleration §%5
(d) Accelerating downward with acceleratigh

Solution

The force diagram includes two forces: the grafotge G = mg= 600 N downward and the
normal forceN, exerted upward by the surface of the scale. mhisnal force is the scale
reading.

(a) Constant velocity meaias= 0, so equilibriumand N=G
(b)N-G=ma=+.5mg =0.5G, so N=G+05G=15G

()N -G =ma=-0.5mg=-0.5G, so N=G-05G=05G

(dN-G=ma=-mg=-G so N=0

The last case, when the scale reading is zero,esepts what is called "effective
weightlessness". The elevator is falling with aecation ¢, as is the person. Thus the person
does not press down on the elevator. He is seeyimgdightless”. This is the situation with
the astronauts in an orbiting space vehicle. Thecleeand everything in it are falling freely,
and hence they all seem weightless. You have plplssen pictures where the astronauts,
their pencils, and their sandwiches and other |l@apgpment float weightlessly around the

spaceship

EXAMPLE 4.9 A small object of mass is suspended from a string of lengthThe object
revolves with constant spegdn a horizontal circle of radius(because the string sweeps out

due surface of a cone, the system is known asiaatgendulum). Find an expression for
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Solution

Fig. 4.8 Conical pendulum
Let 8 be the angle between string and vertical. The forexerted by the string is resolved
into a vertical componerf - cos & and a horizontal compon€ht sin 8. Since the object

does not accelerate in the vertical direchdR, = ma, =0, and the upward vertical

component ol must balance the downward force of gravity. So,

()T - cos 6 = mg. Dividing (2) by (1) we eliminatd:
Since the radial accelerationTs sin 6, the tan§ = v?/(rg) or v = /rg tan 6
Newton’s second law yields: Sincer =L - sin#,

(2) XF =T-sin6 = ma, = mv*/r. v=,/Lgsinftané.
Note, the speed is independent of the mass oflijeeth

EXAMPLE 4.10 A girl moves her brother on a slecaatonstant velocity by exerting a force
F. The coefficient of friction between the sled ahd ground is 0.05. The sled and rider have
a mass of 20 kg. What force is required if (a) ghghes on the sled at an angle of 30° below
horizontal? (b) She pulls the sled at an angledéfedove horizontal?

Solution
N N
A
F cos30° Fsin30° &4 =7
Fr - —— »—»> Fr = > F
F S|n30 V____3_0 | - F COSBOO
y
mg mg
Fig. 4.9 Free body diagram: a) pushing b) pulling
a) N=mg + Fsin 30° Fi = uN =F cos 30° SO
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u(mg + Fsin 30°) =F cos 30°
E= umg _ 00520kg (P8mM 2

= : = : =117N
cos30° — #sin30°  cos30° - 005 8in30°
b) N+ Fsin30°=mg Fi=uN =F cos 30° SO
1 (mg - Fsin 30°) =F cos 30°
-2
= “mg _ 005[20kg .8m[s ~ 110N

" cos30° + 4sin30°  cos30° + 005 &in30°

The force required in (b) is less than for (a) hseain (b) the forc& angles up and supports
some of the weight. This reduddsand hencé.

EXAMPLE 4.11 A coin is placed on a turntable tugniat 100/3 RPM (revolutions per
minute). What is the coefficient of friction betwethe coin and the turntable if the maximum
radius, before the coin slips, is 0.14 m?

Solution

The frictional forceF; between the coin and turntable provides the catitected force to

keep the coin on the turntable. This center-dibébece must equahv/ r.

Fr=uN=umg umg=mv/r F=pN=pmg ¢
2
or w=v/(rg) ( )
v=2mr f = 277.0.14m100 1 min _ 049ms™ -
3 min 60s

Fig.4.10 Free body diagram
Thereforex = 0.49/ (0.141 9.8) = 0.175

EXAMPLE 4.12 The banked exit ramp. Curved exit rafopa highway is tilted toward the
inside of the curve, so a car moving at the deseghapeed can negotiate the curve even
when the road is covered with ice. Let the desigmhapeed be 13.4 m/s and the radius is 50
m. At what angle should the curve be banked?

Solution

On an untilted road, the force that causes theladiceleration is the force of static friction
between car and road. However, if the road isdiie an angl®, the normal forcéN has a
horizontal componenii-sing pointing to the center of the curv@ecause the ramp is to be
designed so that the force of static friction isozeonly the componeni-sind causes the

radial acceleration. So, the Newton's second lasgyior the radial direction:
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Y E. = Nsinf = mv?/r N Ncos#
The car is in equilibrium in the vertical directior N

Thus, form} E, = 0, we have ,\
N cos 8 = mg N sin 6 ey

Dividing (1) by (2) gives tan8 = v?/(rg). %
So mg
0 = tan"[v?/(rg)] = 20.1°

y
Fig.4.11 Car on the banked curve

If a car rounds the curve at a speed less (moee) 1183.4 m/s, friction is needed to keep it
from sliding down (up) the bank. The banking anglemdependent of the mass of the vehicle.

EXAMPLE 4.13 An object falling through the air agh speed experiences a drag fdree
which can be expressed approximately s, :CD,oAAv2 /2

Herep, is the density of ailCp is a drag coefficient that depends on the shagdaediure of
the falling object, and\ is the projected area of the object as seen |lgalkmfrom the ground.
Cp is a dimensionless number between 0 and 1.
(a) Determine the maximum speed (called the ternvielacity vr) a falling object reaches in
the presence of this drag force,
(b) How does the terminal velocity of an object elegh on its size? To answer this, calculate
the ratio of the terminal velocities for two sploati hailstones, one of radilg and a larger
one of radius,
Solution

(a) As the object fallsy gets larger and larger, until finaNygains the terminal velocity;

_ paACpv?
2

Whenvy = constanta = 0, thus V; = / 2mg
CDpAA

(b) For a sphere of icen = (density).(volume)m= p4raR® /3. The projected area seen

F —mg = ma

from below isA = 77R?. Thus

3
v, = 2mg _ [2(p4R /5:))9 _ | 8 JR=«+R, where k= |—oP9
VConA | Cop(iR) | 3C,0, 0P
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R _[R
K\/E R

Thus large objects fall faster than small onesh&f same shape. Comparing the kinetic

. V.
For two ice spheres, 12
VTl

energieKE of these two objects yields:

KE, _mvi,/2 _p(4/3)nR3vi, R3vi, R3 (sz)2 _RIR, _ (R2>4 _ <D2)4
KE; mv3, /2 p(4/3)nR3vi, R3vZ, R} \vpy R3R; \Ry D,

So, a hail having diamet&, = 6 mm has kinetic energ¥/2)* = 81-times bigger than a

hail with diameteiD; = 2 mm. Big hailstones can flatten a wheat figildereas small ones do

not hurt it.

EXAMPLE 4.14 A manufacturer quotes an aerodynaroitstantC = 0.30 for an automobile

of mass 900 kg and cross-sectional akea 2.8 nf. If the driver were to coast (in neutral)
down a long hill with a slope of 8.0° (see Fig.4,1®hat would be the terminal velocity?
Recall that terminal velocity is the constant finalocity of a body moving under the
combined influence of gravity and air resistancesumne that air resistance is the only source
of friction.

Solution

We need only consider the components of the fqueeallel to the motion.

For constant terminal velocityvy, Fp
balances component of weight along the
slope.

G, =mgsing and

Fox = ColAV /2

mg sin 6@

Fig.4.12 Free body diagram

When terminal (constant) velocity is reached, the forces balance and the acceleration is

zero. Thus, Co P AV /2=mgsing

Solving for the velocity, we findvy = /_2’;19:129
DFA

Inserting the values given in the problem, plusainalensitys = 1.3 kg/nf
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=47 m/s

_[2(900kg)(9.81 m - s72) sin 8°
= | 03(1.3kg -m3)(2.8m?)

On such a slope, considerable speed can be atta@fied air resistance limits the motion.

EXAMPLE 4.15 The oscillations of simple pendulummdze analyzed in terms of force. For
small oscillations the tension in the cable cawhiéen in components: one vertical and the
other - the restoring force, the force that retuh@smass to equilibrium.
Solution

mgx

For small angle oscillationsF cos® = F and Fsinf = - = —(mg/Dx, with x

being the displacement, approximately equal toatttelength. As the acceleration is caused

by thex-component of, the Newton's second law yields

d? mg _
mﬁx = —Tx. As x=106:
d? mg d? g .
— 100 = ——=160 —f0 =—-—=0 'ngm/f
e l T l e
Fig.4.13 Simple pendulum
As we know, the solution of this equation is: 0 = 0, cos(wt + ).

Then putting the second derivationéinto the last equation we get the results:

and T=27r\/z
g

The most important point to note is that the pefiad independent of the mass. Historically

T

this was one of the first instruments to measgre the gravitational constant.

EXAMPLE 4.16 A 1 500-kg car moving on a flat, han#tal road negotiates a curve. If the
radius of the curve is 35.0 m and the coefficienstatic friction between the tires and dry
pavement is 0.500, find the maximum speed the ear ltave and still make the turn
successfully. (13.1 m/s)
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EXAMPLE 4.17 A body of mass hangs from two cables fastened symmetric to actijgg

in Figure 4.14. Calculate the magnitubef tensiondl'y, T, in the cables.

- =— cos a
T/G=1/(2cos a)

o} 10 20 30 40 a 50 60 70 80 90

Fig.4.14 Free body diagram Fid® The dependence of the ratio T/G on the amgle
Solution

We decompose the weigld into directions of cables. From the free body thag we can

) G/2
write: cosa = G/2 So:

1

G T_ 1
2cosa or G 2cosa

T=T1=T2=

The dependence of the rafléG on the anglex is shown in Fig.4.15. For small angles the
tension is approximately 0B. Note the strong increase of the tension for anlglgger than
80°.
Let us next solve this example for an asymmetrsecown in Fig. 4.16.
Solution
We must again decompose the wei@hinto directions of cables. We know angles and the
sideG, so we can use the sine rule of triangles.
(I G
sinf  sin(180° — a — )

sinf8
hi=a sin(180° —a — )

sina
=G sin(180° — a — )

G =mg

Fig.4.16 Free body diagram

Note, the tensionB, and T, are proportional tein 8 and sin a, respectively. Not vice
versa, as one would expect!

Settinga = S we should receive the foregoing resuft/{ 2 cos a). Let us prove it:
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To—T = Gsina _ Gsina _ Gsina
1772 7 5in(180° — 2a) ~ sin2(90° — @) ~ 2sin(90° — @) cos(90° — )

Gsina G

2cosasina 2cosa

EXAMPLE 4.18 A traffic light weighing 122 N hangsofn a cable tied to two other cables
fastened to a support as in Figure 4.17. The upgdaes make angles of 37.0° and 53.0° with

the horizontal. These upper cables are not as gstasnthe
37 53

vertical cable and will break if the tension in ihexceeds .
Tl 2

100 N. Does the traffic light remain hanging instlituation,

or will one of the cables break¥;(= 73.4 N, T, = 97.4 N,

both values are less than 100 N, so they will meak)
Fig. 4.17 Traffic lights

EXAMPLE 4.19 A car of mass is on an icy driveway inclined at an angleFind the
acceleration of the car, assuming the drivewayigidnless. So far we were neglecting the

drag and friction forcesa(= g sin ).

EXAMPLE 4.20 A hockey puck on a frozen pond is gi\an initial speed of 20.0 m/s. If the
puck always remains on the ice and slides 115 morbetoming to rest, determine the

coefficient of kinetic friction between the puckdaice. (1= 0.177)

EXAMPLE 4.21 A body of mass is on an incline at an angle 45%After moving 1 m its
speed increased from the initial value 1.8 km/H206 km/h. Determine the coefficient of
Kinetic friction. (1 = 0.135)

EXAMPLE 4.22 A small sphere of massis attached to the end of a cord of lengtht an
angled from vertical and set into motion with constaneegv in a vertical circle about a

Lcos6
g

fixed pointO. Determine the period of this conical pendulumT(= 2n
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5 WORK, ENERGY, POWER.

A systemis most often a single particle, a collection aftles or a region of space. A
system boundaryseparates the system from #m@vironment. Many physics problems can
be solved by considering the interaction of a systath its environment.

Thework Wdone on a system by an agent exerting a constargfFoon the system is
the product of the magnitude of the displacement of the point of applicationtld force
and the componerftcos © of the force along the direction of the displacate:

W =F-Ar = F Arcos 0
where the result is a scalar quantity ands the angle between the two vectors. The scalar
product obeys the commutative and distributive laws

If a varying force does work on a particle as thetiple moves along the axis form

x; to x¢, the work done by the force on the particle isegiby
X
W= f E.dx
X

WhereF, is the component of force in tledirection.
Thekinetic energy KE of a particle of mass moving with a speedis
KE = (1/2)mv?
The work - kinetic energy theorem states that if work is done on a system by

external forces and the only change of the syssemits speed, then
Z W = KE; —KE; = (1/2)mv} — (1/2)mvy}

For a non-isolated system, we can equate the ehantpe total energy stored in the
system to the sum of all the transfers of energgsacthe system boundary. For an isolated
system, the total energy is constant — this igi@stent otonservation of energy

If a kinetic friction forceF, acts along a distanek the kinetic energy of the system

is reduced and the appropriate equation to beeapdi
AKE = KEp—KE; = ~Fep - d+ ) Wouner forces
or

KEf = KE; — ka -d+ Z Wotherforces

Theinstantaneous powerP is defined as the time rate of energy transfeanlagent

applies a forc& to an object moving with a velocity the powelP delivered by that agent is
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P = d—W =F-v

dt
EXAMPLE 5.1 A roller-coaster car of massglides down to the bottom of a straight section
of inclined track from a heightt (a) What is the work done by gravity on the q@jAVhat is
the work done by the normal force? Treat the mati®iparticle motion.
Solution
(a) Figure 5.1 shows the inclined track. The retieaster car moves down the full length of

this track. By inspection of the right trianglerfioed by the incline and the ground, we see that
h

the displacement of the car has a magnitude s =

sin 8

Fig.5.1 Aroller- coaster car Fig.5.2 Free body diagram

Figure 5.2 shows a "free-body" diagram for thearaan incline of height; the forces acting
on it are the normal fordd and the weighG.

The weightG makes an angle (90°® with the displacemerd. The workW done by the
weightG along the patlsis

W =6G-s=Gscos(90°—0) = mgﬁcos(‘)o0 —-0) = mgﬁsin@ =mgh

(b)The work done by the normal force is zero, sitiés force makes an angle of 90° with the
displacement. The important thing from this resslithat the work done by the weight is
independent of the angle of the incline - it degeadly on the change of height, not on the
angle or the length of the inclined plane

(c) Remember also that the result of zero worktlfi@e normal force is quite general. The
normal forceN acting on any arbitrary body rolling or sliding any kind of fixed surface

never does work on the body, since this forcevag$ perpendicular to the displacement.

EXAMPLE 5.2 Calculate the kinetic energy of eachha following:

(@)  The Earth orbiting the Sunm=5.98-10"*kg v =2.98-10 m/s
(b) Car m=1500kg v=27m/s

(c) World-class sprinterm=80 kg v =10 m/s
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(d) Rifle bullet m=0.01kg v=1000 m/s

(e)  Nitrogen molecule inair m=4.6-10%°kg  v=500 m/s
Solution

Using KE =mV /2 yields the following interesting results:
(a) 2.66- 10°%J, (b) 5.47 10°J, (c) 4 10°J, (d) 5 10°J, (e) 5.8 10%*J

EXAMPLE 5.3 A 1000-kg elevator cage descends 4Q0itmin a skyscraper.
(a) What is the work done by gravity on the elevatmge during this displacement?
(b) Assuming that the elevator cage descends ataanvelocity, what is the work done by
the tension of the suspension cable?
Solution
(a) With thex axis arranged vertically upward, the displacenenegative,
Ax=-400 m; and th& component of the weight is also negative,
G, = —mg = —9800 N

Hence the work done by the weight is

W = G,Ax = (—9800 N)(—400 m) = 3.92 - 10°]
(b) For motion at constant velocity, the tensiorcéomust exactly balance the weight, so the
net forceFex is zero. Therefore, the tension force of the chblethe same magnitude as the
weight, but the opposite directiof; = mg= 9800 N
The work done by this tension force is then

W = T, Ax = (9800 N)(—400 m) = —3.92 - 106 ]
This work is negative because the tension force #med displacement are in opposite
directions. Gravity does work on the elevator cage] the elevator cage does work on the
cable.
COMMENTS: (a) Note again that the work done by gyass completely independent of the
details of the motion; the work depends on thel tadical displacement and on the weight,
but not on the velocity or the acceleration of thetion. (b) Note that the work done by the
tension is exactly the negative of the work doneglgvity, and thus the net work done by
both forces together is zero (we can also seelpiexamining the work done by the net
force; since the net forde.etxis zero, the net work is zero). However, the refauwlthe work
done by the tension depends implicitly on the aggions made about the motion. Only for
motion with no acceleration does the tension foereain constant at 9810 N. For instance, if
the elevator cage were allowed to fall freely viltle acceleration of gravity, then the tension
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would be zero; the work done by the tension woh&htalso be zero, whereas the work done
by gravity would still be 3.9210° J.

EXAMPLE 5.4 What is the work performed in stretalia spring 0.1 m, when for stretching
the springe, = 0.02 m we need forcé, = 2500 N?

Solution

The force is in the direction of the displacemenFs dx = Fdx

W_de _kf"-l o= X _2500N [(0.1m)° — 0]
ST TR T oozm 2

= 625]

EXAMPLE 5.5 Place a blockn = 3.0 kg at the top of la= 3.4 m high frictionless incline. At
the bottom of the incline the block encounters@ngpwith a constant of 400 N/m. No energy
is lost to friction. How far is the spring compred8

Solution

The potential energy at the top of the plane, whscthe same as the kinetic energy at the
bottom of the plane, goes into compressing thengpiThe kinetic energy at the top of the

plane ismgh

kex? h
So: mgh=i or x=\/2mg =J239834]=0.71m
2 k 400 N/m

EXAMPLE 5.6 An elevator car has a mass of 1 00@kd is carrying passengers having a
combined mass of 200 kg. A constant friction fan€4 000 N retards its motion.

(a) How much power must a motor deliver to lift tekevator car and its passengers at a
constant speed of 3.00 m/s? (64.9 kW).

(b) What power must the motor deliver at the instha speed of the elevatonisf the motor

is designed to provide the elevator car with anamhacceleration of 1.00 M#s(23.4 kW)

EXAMPLE 5.7 A block of mass 1.6 kg is attached ttvaizontal spring that has a force
constant of 19 N/m. The spring is compressed 2.0 cm and is teteased from rest, (a)
Calculate the speed of the block as it passes ghrdlbe equilibrium positiox = 0O if the
surface is frictionless. (0.5 m/s) (b) Calculate #peed of the block as it passes through the
equilibrium position if a constant frictional forcé 4.0 N retards its motion from the moment

it is released.
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= |
X = 0 Xf = Xomax
Fig. 5.3 A block of mass attached to a spring
Solution
(a) Block starts with zero initial speed and itgiah position isx; = —2 cm. The work done
until it reaches; = 0 cm is:

0 0

1 1 - —
Wy = g hoxdx =] = 5103 Nm - (=2 1072m)” = 0.2

—-0.02
Using work-kinetic theorem, we gét, = %mvf — %mviz, 0.2=%(1.6 kg) v — 0, hence
vy = 0.5m/s.
(b)First calculate the lo®KE of kinetic energy because of friction:

AKE = —F,,d = —4N-2:10"? m= — 0.08]

The final kinetic energy in the presence of frintis then

1
KEf = 0.2] - 0.08] = 0.12 J=5 mvf

And hence vy =,/2-0.12)/m = /2-0.12]/(1.6 kg) = 0.39 m/s

EXAMPLE 5.8 Place a mags on a track made up of a flat section, L, with cogght of
friction, W, and two frictionless semicircular sarés of radius R. Let the mass start from the
top of one of the quartercircular and calculate nehiecomes to rest.

Solution

m

- L: >

Fig. 5.4 A mass moving on a track
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The initial potential energy isngR When the mass encounters the friction surfads, th
(potential) energy is dissipated in doing work t@i@ome friction. Assuming the energy lost
due to friction in one traverse is less than theainpotential energy, the mass will rise to a
height (on the opposite semicirckR)dictated by the energy statement

mgR' = mgR — umgL
After another traverse of the flat portion of theck the height will be dictated by

mgR" = mgR — 2umgL
and so on until all the original potential energylissipated.

EXAMPLE 5.9 In an amusement park roller coastee adcar starts from rest at point A and
races through a loop-the-loop. What is the mininfhweighth from which the car can start if it
IS not to leave the track at point B? The loop faasusR.

Fig. 5.5 A roller coaster ride

Solution
If the car is just about to leave the track at p&nthe normal force exerted on the car by the
track at this point is zero. The only force actorgthe car is themg, and this must provide

the needed centripetal force to keep the car maadimgg the circular track. Thus

2
mg=% o) vZ = Rg

We can find the speeadas a function of the starting elevatioity applying the conservation
2
of energy principle. mgh + 0 = mg2R + % replacingv? = Rg
gh=g2R + gR/2, h=5R/2

EXAMPLE 5.10 Falling rock. If the original height the rock isy;= h = 3 m, calculate the

rock’s speed when it has fallen to 1 m above tharyt.
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Solution
One approach is to use the kinematic equations. ulseinstead apply the principle of
conservation of mechanical energy, assuming thigt gnavity acts on the rock. We choose
the ground as our reference levglX 0). At the moment of release (point 1) the reck”
position isy; =3 m and it is at rest; = 0. We want to find, when the rock is at position
=1m.
mvi/2 +mgy, = mvi/2 +mgy,

Them's cancel out. Setting = 0 and solving for? we find

v =29(y;—y;)=2-98m-s72-(3—1)m = 39.2 m?s?2

v, =v39.2 m-s"1 =63 m-s7?!

EXAMPLE 5.11 A compact car has a mass of 800 kd,iemefficience is rated at 18 % (that
is, 18 % of the available fuel energy is delivetedhe wheels). Find the amount of gasoline
used to accelerate the car from rest to 27 m/stiséact that the energy equivalent of 1 liter
gasoline is3,6 - 107 J.
Solution
The energy required to accelerate the car fromtoest speedris equal to its final kinetic
energy:
Er = (1/2)mv? = (1/2)(800 kg) (27 m/s)? = 2.9 - 10° ]
If the engine were 100 % efficient, each liter afgline would supplg,6 - 107 ] of energy.
Because the engine is only 18 % efficient, eadr litelivers an energy of on)18 - 3.6 -
107 ] = 6.5 - 10° ]. Hence, the numbaf of liters used to accelerate the car is
29109
6.5 106 ] /L

Let us estimate that it takes 10 s to achieverideated speed. The distance traveled during

= 0.045 L

this acceleration is

Ui+l7fAt:0+27

Ax = vAt = 10 =135m

At a constant cruising speed of 27 m/s, 0.045 lgadoline is sufficient to propel the car
approximately 800 m, six times further. This demrates the extreme energy requirements
of stop-and-start driving.
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EXAMPLE 5.12 Car accelerating up a hill. A car chssm is accelerating up a hill. The total
resistive force ilN is f; = (218 + 0.7v?%), wherev is the speed in m/s. Determine the power

the engine must deliver to the weels as a funadf@peed.

Solution
The forces on the car are shown in figure 5.6. yipgl Newton’s second law to the motion
along the road surface, we find

ZFx =F —f —mgsinf = ma
F = ma + mg sin 0+f,
F =ma+mgsin6 + (218 + 0.7v2)

And the power required to move the car is A i

P = Fv = mav + mgvsin@ + 218v + 0.7v3 Fig. 5.6 A car moving uphill

Theterm mav is the power that the engine must deliver to aceét the car. If the car moves
at constant speed, this term is zero and the pmaler requirement is reduced. Ttegm
mgvsin @ is the power required to provide a force to batarec component of the
gravitational force as the car moves up the inclirfas term would be zero for motion on a
horizontal surface. Theerm 218 v is the power to balance rolling friction, and tleem
0.7v3 is the power needed against air drag.
If we takem = 1450 kgy = 27 m/sa =1 m/$ andf = 10°, then the various terms Mare:
mav = (1450 kg)(1 m/s?)(27 m/s) = 39 kW
mgv sin @ = (1450 kg)(9.8 m/s?)(27 m/s)(sin 10°) = 67 kW
218 v = 218(27 m/s) = 5.9 kW
0.7v3 = 0.7(27 m/s)® = 14 kW
So the total power required is 126 kW. Note thatpgbwer requirements for traveling

at constant speed @7 m/s on a horizontal surface are only 20 kW (the surtheflast two
terms). Furthermore, if the mass were halved (t®e cof compact car), then the power

required also is reduced by almost the same factor.

EXAPLE 5.13 The simple pendulum. A sphere of nrasgtached to mass less cord of length
L is released from rest when the cord makes an ahgleith the vertical and the pivot is
frictionless. a) Find the speed of the sphere whismat the lowest point B.

Solution
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The only force that does work on the sphere iggtiawitational force (the force of tension is
always perpendicular to each element of the digptant and so does no work). Because the
gravitational force is conservative, the total neubal energy of the pendulum — Earth
system is constant (in other words, we can claskif/as an “energy conservation” problem)
as the pendulum swings, continuous transformatetwéen potential energE) and kinetic
energy KE) occurs. At the instant the pendulum is releasled, energy of the system is
entirely potential energy. At point B the pendulbas kinetic energy, but the system has lost
some potential energy. At C the system has regaitsethitial potential energy, and the
kinetic energy of the pendulum is again zero.

We measure thg-coordinates of the sphere from the center of matihen from the

principle of mechanical energy conservation:

v, = —Lcos by, yg = —L '\\P =(0,0)
AN
PE, = —mgL cos 8,, PEp = —mgL : .
AN
KE, + PE, = KEg + PEj { ‘
0 — mgL cos 8, = mvi/2 — mgL A " -C

vp = /29L(1 — cos 6,)
Fig.5.7 The simple pendulum

b) What is the tensiofig in the cord at point B?
Solution
Since the force of tension does no work, we cametérmine the tension using the energy
method. To findTg, we can apply Newton’s second law to the radisdation. First, recall
that the radial acceleratian. of a particle moving in a circle is equal®é/r directed toward

the center of rotation. Sinee= L, we obtain
ZFr =Tz —mg = ma, = mvg®/L
Substituingvg gives the tension at point B:
Ty =mg + 2mg(1 — cos8,) = mg(3 — 2cos )
Note that the tensiofi; in B is greater than the weigmg of the sphere.

Note, this equation gives the expected resultThat mg when the initial anglé, = 0.
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EXAMPLE 5.14 A pendulum of length 2 m and mass Kij5s released from rest when the
cord makes an angle of 30° with vertical. Find speed of the sphere and the tension in the

cord when the sphere is at its lowest point. (2028, 6.21 N).

EXAMPLE 5.15 On a frozen pond, a person kicks &@d®led, giving it an initial speed of

2.2 m/s. How far does the sled move if the coedfitbetween the sled and ice is 0,17 (2.5 m)

EXAMPLE 5.16 A 3.00-kg crate slides down a rampeTiamp is 1.00 m in length and
inclined at an angle @ = 30.0° as shown in next Figure. The crate stesta rest at the top,
experiences a constant friction fore of magnitude 5.00 N, and continues to move a short
distance on the horizontal floor after it leaves thmp. (a) Use energy methods to determine
the speed of the crate at the bottom of the raimp. low far does the crate slide on the
horizontal floor if it continues to experience &fiion force of magnitude 5.00 N? (2.54 m/s;
1.94m)

Fig. 5.8 A crate sliding down the ramp
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6 GRAVITATIONAL FIELD

Newton’s law of universal gravitation says: “Evepgrticle in the universe attracts every
other particle with a force directly proportional the product of their masses and inversely
proportional to the square of the distance betwbem. The direction of this force line is
along the line joining the particles.”

In vector form theNewton’s law of universal gravitationis:

mm
F=—G 117t2

T3
F is the gravitational force exerted on the nras$®y the particle of magsy, r is the position
vector of the particle 2 with respect to the pé&etid, the minus sign indicates that the
gravitational force has opposite direction to thsiflon vector, it means it is directed towards
the particle 1. The multiplication by the displaeervector does not change the inversely
proportional dependence of the gravitational faceéhe square of the distance between the
particles as the magnitude of the position vector loe divided with the cube of the position
vector in the denominator.
The universal gravitational constanG ~ 6,674-10"*N-m*kg*.
The property which characterizes the gravitatidiretl itself is calledgravitational
field strength and is defined as:
E=F/m
F is the gravitational force acting on the particlarassm. Using Newton’s law of universal
gravitation we can express the gravitational fietdated by the particle of mad4 in a

particular point in space with the position veatas

E=-GXr 0

T3
Gravitational potential energy is defined with respect to infinity, it means
E,(r » ) = 0 and is defined with equation E, = —-G™M™2
Gravitational field can be also defined with gravitational potendatith respect to
any referential point, e.g. in infiniiy(r - o) = 0. Gravitational potential at certain point is

v ==E
m
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EXAMPLE 6.1 The gravitational force between sphariabjects and small objects can be

modeled as particles having massgsand n, separated by a distanceis attractive and

according to Newton’s law of gravitation has a nmagte Fg =Gn1mzlr2_

A satellite of massn moves in a circular orbit around the Earth at astant speed at
altitudeh above the surface of Earth. Determine the speduedaatellite.

Solution
The only external force acting on the satellitehis force of gravity, which acts toward the

center of the Earth and keeps the satellite inirtsular orbit. Therefore,

F=F=GM:m /1%, From Newton’s second lafy= mawe obtain

mvy/r=GM.m/r?. Solving forv gives

V=\/GI\/|5/r =\/GME/(FE +h) , Whererg is the radius of Earth.

EXAMPLE 6.2 Geosynchronous satellite is one thaystabove the same point on the Earth,
which is possible only if it is above a point om tequator. Such satellites are used for TV and
radio transmission, for weather forecasting, andammunication relays. Determine (a) the
height above the Earth’s surface such a satellitst morbit, (b) such a satellite’s speed, and (c)
compare to the speed of a satellite orbiting 200akiwve Earth’s surface.

Solution

To remain above the same point on Earth as thé Eatdtes, the satellite must have a period
of one day. We can apply Newton’s second |Bws ma, wherea = V’/r if we assume the
orbit is circular.

(@ The only force on the satellite is the force of wyaion, so

GMmg/r> =myVv?/r, v=2mr /T, T =24[3600=86400s

GM./r2=v?/r=(2mr [TV Ir =(27)r /T2, or  r3=GM_T?/(271)°

r=3/GM T2 /(271)* =3/ 66710 Nm?kg 2 [598[10% kg [{86400s)’ /(277)?

r = 42300"m = 42300km
Subtracting the Earth’s radius of 6378 km we rexeive geosynchronous satellite must orbit
about 36,000 km (about 6Rabove the Earth’s surface.

(b) We solve fowv in the satellite equation given in part (a):

v=,/GM./r =3070n/s v=2rr /T =3070n/s,
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(c) The equation in part (b) farshowsv=+/1/r .
Soforr,=rg+h=6380 + 200 = 6580 km we get

Vv, =Vy/r/r, =3070, 42300/6580m/s=7780m/s

Note. The center of a satellite orbit is alwayshat center of the Earth, so it is not possible to

have a satellite orbiting above a fixed point om Harth at any latitude other than 0°.

EXAMPLE 6.3 Calculate the escape speed from Eaoth 5000 kg spacecraft, and
determine the kinetic energy it must have at Earthirface in order to escape the Earth’s
gravitational field.

Solution
KE; + PE; = KE; + PE;

KE; = 0 because final velocity is zero, dPH; = 0 because its final distance is infinity, so

mvk, N —GMym _

0+0
2 Rg

2GM 2:6.67-10"11N-m?2 /kg? -5.98-1024k
Vose = E = e E=112-10*m/s
RE 6.37-10°m

Kinetic energy of spacecraftE = %mvezsc =3.13-101]

EXAMPLE 6.4 A satellite with a mass of 200 kg is@td in Earth orbit at a height of 200 km
above the surface, (a) Assuming a circular ortmty long does the satellite take to complete
one orbit? (b) What is the satellite’'s speed? (bat\'s the minimum energy' necessary to
place this satellite in orbit (assuming no airtfdn)? ((a) 1.48 h, (b) 7.79 km/s, c) 6.23 J)
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7/ MANY BODIES MECHANICS

When talking many bodies’ mechanics we think ofteys of particles that is physically
explored as one unit. The conceptlué center of mass (CM)s helpful in understanding the
behavior of a system of particles. For two parfiotd equal mass, the center of mass lies
midway between them on the line joining them. Foohject like a brick, the center of mass
is at the geometrical center.

If a system consists of particles of magsat positionr;, m, at positionr,...,andm, at

rn, the position of the center of mass is defineddo

Tey = = =
M my+m, +--m, M M

mry + myry +omur,  Mury +myry, +empr, 1 O
= m;r;
1

HereM is the total mass of the system. Mg andz coordinates of the center of mass are

13 138 13
Xem :MZmixi Yewm :Mzmiyi Zeoy zmzmizi :
=) = =

The center of mass of a system of particles with 'l massM moves like an equivalent
particle of massM would move under the influence of the net externaforce on the
system Macy = X Fexti

The total momenturp,,; of a system of particles is defined as:

Ptot = Zpi = Zmivi = Mvcy
7 7

Hence the total linear momentum of the system eqgthed total mast multiplied by the
velocity v, of the center of mass. In other words, the toteddr momentum of the system is
equal to that of a single particle of magsnoving with a velocitw ;.

Integrating Macy = Y; Fext:

dvcy
szeXt’ldt:fMaCMdt:Mf dt dt:MfdeM:M'AvCM:AptOt:I
i

It means that théotal linear momentum of a system of particles isanserved if no net
external force is acting on the systemY; Fo,; = 0). It follows that for an isolated system
of particles, both théotal momentum and the velocity of the center of mass are cohstan
time. This statement is thgeneralization of the law of conservation of momentum for a

many-particle system
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Torque t is therotational quantity analogoudo force. For an object to acquire an angular
acceleration, it must be subject to a non-zeraaeregue. Torque means "twist". The torqguie
due to a forc& about a pivot P is
T=1XF

Wherer is the position vector (a vector from the poiminfrwhich torque is measured to the
point where forcé is applied) and the magnitude of the torque is

T=|t| =rFsin®
The angular momentumL of a particle relative to an axis through the iori@ is defined by
the cross product of the particle’s instantaneasstipn vector and its instantaneous linear
momentunp: L=rXxp
Now we can recognize that the concept of angulanemum is not going to be easy to work
with. If | choose any point on line of momentumvector, then the angular momentum
relative to such point is zero (as both vectorgiaea in the same directiofjs zero and
sind = 0 as well). It is clear now thahgular momentumL is not an intrinsic property of a
moving object, unlike momentump, which is an intrinsic property. What the angular
momentum is depends on the point of origin we choesThe total angular momentum of

a system of particles is Lige = i1 X mv;
. L dL , d ,
Time derivation of angular MOMENtURY = Tey IS analogous tod—'t’ = F,,; for translational

motion. If no external torque acts on a system, the angulamomentum of the system
remains constant:

If 7..=0 thenL =const
This is the law of conservation of angular momentunt..
The moment of inertial = ¥;m;r? , r; is the distance from the axis of rotationi-th point
with the massn.

The total kinetic energy associated with rotatianation is

1 1 1 1
KEg = E KEg, = = E mv? == E mir? w? = = w? E mir? = = lw?
i 2 : 2 i 2 i 2

(ICM + mRz)(lJz ICMCUZ mRza)z ICMCUZ mvz

KE 2 2 2 2+2

= KER + KET

This is an important result. It states ttieg kinetic energy of a rolling object is equal
to the kinetic energy of translation of the centerof mass (imagining all of the mass

concentrated there) plus the kinetic energy of rot@on about the CM.
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Collisions When two particles collide, the forces they exertemch other are much larger
than any external forces acting. This allows uagsume that external forces are negligible;
hence the momentum of the system remains congWlet.call such systems isolated). This
means that the system's momentum just before &sioallis the same as the momentum just
after the collision. In a collision some kineticeegy of the particles is converted to heat,
sound, plastic distortion, and so on. Such collisiare called inelastic collisions. Sometimes
the loss in kinetic energy is negligible (as whep billiard balls collide). Such collisions are
called elastic collisions, and for them the kinetieergy of the system is conserved before and
after the collision. Of course, the kinetic eneadyan individual particle can change, but the
combined kinetic energy of both particles remahesgame.

Inelastic collisionsWhen two objects moving in the same directionlideland then
stick together, the collision is perfectly inelastif massm, has speed; and massn, has

parallel speeds, just before a perfectly inelastic collision (tharticles stick together), the

speedV just after the collision is determined by mv, +m,v, =(m, + m, v or
V = myV, +m,v,
m, +m,

Elastic collisionsLet us have a case of two masses moving in the shraction and
then colliding (1D case, where signs take cardretctdon). If the collision is perfectly elastic,
massesmy and mp can have different velocitie¥; and V. after the collision. Sincéhe
momentum and the kinetic energy remains constardand we have the case when the two
masses move in the same direction before the icollis

my, + my, = myV, +m,V, (mlvf)/ 2+ (mzvzz)/ 2= (ml\/f)/ 2+ (mzv;)/ 2.

Equilibrium The requirements for a body to be in equilibriune: a
1.The vector sum of all external forces that actt@liody must be zero

2.The vector sum of all external torques that acthenbody must be zero

EXAMPLE 7.1 Show that the center of mass of a rbdhassM and lengthL lies midway

between its ends, assuming the rod has a uniforss per unit length.

Solution

1 17 AXE LA
=— | xdm=—| xAdx=—— | =—
o |v|I MJ(; M2 "° 2M
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Substituted = M ,Xem=L/2 dm = Adx

L ]
||

Q—X—.‘d }‘7

Fig. 7.1 Arod of mass M and length L

EXAMPLE 7.2 Suppose a rod is nonuniform such ttetmass per unit length varies linearly
with x according to the expressiare ax, wherea is a constant. Find thecoordinate of the
center of mass as a fractionlLof

Solution

Because the mass per unit length is not constahisrcase but is proportional xpelements
of the rod to the right are more massive than etgsieear the left end of the rod.

In this case, we replacentby Adx, wherel =ax.

1 1k 1k K
Xen, =fodm:M£de:M!)'xade=3_M

L 2
The total mass of the rod: M :jdm:jaxdx:m‘?
0

Substituting Xm ==L

wIiN

EXAMPLE 7.3 Place a small ball of mass on top of a large ball of mass; (m; » my).
Drop the two simultaneously onto a floor. The reslimpressive. The small ball takes off
with big speed. We can calculate the height to whiwe ball would rise if the two are
dropped from heighih. We assume all collisions are elastic. (Hint: Imagthat first the big
ball collides elastically with the floor, and themen it rebounds, it meets the falling ball that
is right behind it.)

Solution

The big ball hits the floor with speed where conservation of energy during the fall yseld
0+mgh=(1/2) (mv2)+0 v, =/2gh
The ball bounces up with speedand collides with the small ball, whose velociy4 = -v;.

After the collision the velocity of the small orgegiven by solution
If the collision is elastic the momentum and theekic energy remain constant
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my, + my, = mV, + my, (mlvf)/ 2+ (mzvzz)/ 2= (mlvf)/ 2+ (mzvj)/ 2.
These two equations can be solved for the two uvkrfaal speedsy; andV;
ml(vl2 —V12)= —mz(vz2 —Vf) .
Factoring both sides of this equatiorml(vl -V, )(v1 +V, ): —mz(v2 -V, )(v2 +V, )
Rearranging the first equation ml(vl -V, ) = —mz(v2 —VZ)
Dividing the last two:v, +V, =v, +V, or V, =V, = —6/1 -V, ),Where
Vi - V» is the relative speed of particle 1 with respequdrticle 2 before the collision, akg —
Vs is the same quantity after the collision. It isiateresting result - the relative speed of one

particle with respect to the other does not changan elastic collision. We can solve this

equation forV, and substitute it back intov, +m,v, =mV,+m)\V,. Finally we get:
ml+m2 ml+m2 ml+m2 ml+m2

where m, >>m, V, U2v, —v, =2y, —(—vl) =3y, =3,/2gh

Applying conservation of energy to the rising sniall gives us the heighit to which the

smallballrises.  (myV2)/2+0=0+mgh ' =(3/2ghJ /(2g)=0h m

EXAMPLE 7.4. The blade of a circular saw is inilyakotating at 7000 revolutions per
minute. Then the motor is switched off, and thedblaomes to a stop in 8 s. What is the

average angular acceleration? (-91.6 radidns/s

EXAMPLE 7.5 An automobile accelerates uniformlyrfr® to 80 km/h in 6 s. The wheels of
the automobile have a radius of 0.3 m. What is Emgacceleration of the wheels? Assume

that the wheels roll without slipping. (12 radian¥/
EXAMPLE 7.6 The large centrifuge has an arm of tan8.8 m. When rotating at 175

revolutions per minute, what is the speed of the ehthis arm and what is the centripetal
acceleration?(= 1.6-:10°m/s;a.= 2.9-10° m/s)

54



EXAMPLE 7.7 A uniform rod of length. and mas$ is free to rotate on a frictionless pin
passing through one end. The rod is released fesitrin the horizontal position.

(a) What is its angular speed when the rod reachdé@wisst position?

Fig.7.2 A uniform rod of length L and mass M freedtate on a frictionless pin

Solution

We choose the configuration in which the rod isdiag straight down as the reference
configuration for gravitational potential energy darassign a value of zero for this
configuration. When the rod is in the horizontatition, it has no rotational kinetic energy.
The potential energy of the system in this configion relative to the reference configuration
is MgL/2 because the center of mass of the rod is aightig?2 higher than its position in the

reference configuration. When the rod reacheiutges$t position, the energy of the system is
. : 1 . o :
entirely rotational energglaf, wherel is the moment of inertia of the rod about an axis

passing through the pivot. Using the isolated systenergy) model, write a conservation of

mechanical energy equation for the systé&:; + PE; = KE, + PE

By substituting we get %Iw2 +0= O+%Mgl

Solving the equation fap and usingl :%MLZ for the rod
w= —MgL = 3—g
Vo V L

(b) Determine the tangential speed of the center ofsmaasl the tangential speed of the
lowest point on the rod when it is in the vertipabition.
Solution

Using the result from part (a)
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L 1
Vey = rw:Ew:E 3gL

Because for the lowest point on the rod is twice whasifar the center of mass

V=2 =\/@—

EXAMPLE 7.8 A 75 kg hockey player traveling at 12sntollides with a 90 kg player
traveling, at right angles to the first, at 15 mihe players stick together. Find their resultant
velocity and direction. Assume the ice surfaceddrlctionless.

Solution

This problem can be analyzed by conservation of emaom. Calculate the momenta and
draw a vector diagram.

p, = 75kg (12m/s) = 900kgin/ s P2 = 1350 kg m/s

p, = 90kg (15m/ s) = 1350kg In/s p=1620 kg m/s
The angle of the two hockey players is:
tand =1350/900=15, or =56

i i =900 kg m/
And the resulting momentum is: P gmis

p= /135(3 +90CF =1620kgin/s Fig. 7.3 Momentum vector diagram

The players move off with velocity = p/(m, +m,)= 983m/s at an angle of 56° to the

original direction of the 75 kg.

The second solution: A more formal approach is tibeva conservation of momentum
statement equating the total (vector) momentum rbetbe collision to the total (vector)
momentum after the collision. Take the pludirection as the initial direction of the first
player and the plug direction as the original direction of the secqudyer. Using the
numbers already calculated:

[900 +1350j kg n/s = (165kg)v or v=[545 +818j]m/s

EXAMPLE 7.9 A ballistic pendulum, a device for maeng the speed of a bullet, consists of
a block of wood suspended by cord. When the bidléted into the block, the block is free

to rise. How high does a 5.0 kg block rise wher2 @ bullet traveling at 350 m/s is fired into
it?
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= =
m

M m+M
Fig. 7.4 A ballistic pendulum
Solution
The collision between the bullet and the blocklesady inelastic (the bullet comes to rest in
the block). Part of the kinetic energy of the butiees into friction as the bullet burrows its
way into the block. Therefore mechanical energyoisconserved.
Because the collision is inelastic, apply conseéowabf momentum of the collision. Before
the collision, all the momentum is in the mv of thdlet. After the collision, the momentum
is in the (n + M) V of the block and bullet. We assume that the balbehes to rest (transfer
all its momentum) before there is appreciable nmotibthe bullet-block combination.
mv=(m+M)V
After the collision, the rise of the block is detened by energy analysis. The kinetic energy
of the block goes into potential energy. (m+MNM2/2=(m+M)gh or V?=2gh

Substituting foV from mv =(m + M) V
? m+ M V( m Y
v> =2gh, so V= J2gh  or h=—
[m+Mj J m J Zg[m+Mj

gives the relation between the velocity of the éudind the height the block and bullet rise.

For this problem h= 5
2x98m/s” | 5012

2 2
(350m/s) [omzj - 36em
In this problem the 0.012 can be neglected in commgato 5.0. This is not always the case

so we writem + M asb.012 as a reminder to include bath+M in the calculation.

EXAMPLE 7.10 A 6.0 g bullet is fired horizontallptio a 2.8 kg block resting on a horizontal
surface with coefficient of friction 0.30. The ketllcomes to rest in the block, and the block
slides 0.65 m before coming to a stop. What is/#ecity of the bullet?

Solution
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v

— >
= = p=1030 =

m M m-M = 0.65m

Fig. 7.5 A bullet fired into a block

Assume the bullet comes to rest in the block befloeeblock moves appreciably and that all

the momentum in the bullet is transferred to thellebblock combination.
mv = (m+ M )V

Once the bullet-block combination is movingvatthe kinetic energy, (1/2)r( + M)V ?, goes

into work to overcome friction  p(m + M)gx

(m+MV?/2=pu(m+M)gh, or V?=2ugh.

2
L m 5
Substitutin v /2= h
g (m+Mj HJ

Or V= m;M J2ugh = %gs\/zx 0.30(9.81m/32)0.65m =914m/s

EXAMPLE 7.11 A father of massy and his daughter of masg$; sit on opposite ends of a
seesaw at equal distances from the pivot at theecerhe seesaw is modeled as a rigid rod of
massM and lengthl, and is pivoted without friction. At a given montethe combination

rotates in a vertical plane with an angular speed

(a) Find an expression for the magnitude of the systemgular momenturn.
Solution
Ignore any movement of arms or legs of the fathet daughter and model them both as
particles. The system is therefore modeled asid dfject. The moment of inertia of the
system equals the sum of the moments of inertthethree components: the seesaw and the
two individuals. We will use the moment of inertiithe rod calculated to the horizontal axis

passing through the centér:1—12MI Z and for each person | =mr®, (r = 1/2).
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The total momentum is then: M *,
2 2 \
=igut (ol l
12 2 2 \ 0 0\ & mag

The magnitude of the angular momenturof x

the system is then

[2( M meg
L=Ia):Z(?+mf +dea)

Fig. 7.6 Seesaw

(b) Find an expression for the magnitude of the angadaeleratior of the system when
the seesaw makes an an@heith the horizontal.
Solution
Generally, fathers are more massive than dauglgerthe system is not in equilibrium and
has an angular acceleration. We identify the sysiemon-isolated because of the external
torque associated with the gravitational force, @ies of rotation to be-axis. To find the
angular acceleration of the system at any angldjratecalculate the net torque on the system

and then useZTeXFlO' from the rigid object under a net torque modelotitain an

expression four .

I
T, :mfgzcosé?
T, :—mdglgcose

T,.=T; +T, :%(mf —md)glcose

a= z Text _ 2(mf - My )g cos@

I M
I[3+mf +md)

EXAMPLE 7.12 A star rotates with a period of 30 dapout an axis through its center. The

And hence

period is the time interval required for a point e star's equator to make one complete
revolution around the axis of rotation. After tharsundergoes a supernova explosion, the
stellar core, which had a radius of*lm, collapses into a neutron star of radius 3.0 km
Determine the period of rotation of the neutrom.sta

Solution

Let us assume that during the collapse of theastetire, (1) no external torque acts on it, (2)

it remains spherical with the same relative massridution, and (3) its mass remains
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constant. We consider the star as an isolatedmysteéerms of angular momentum. We do
not know the mass distribution of the star, buthage assumed the distribution is symmetric,
so the moment of inertia can be expressadd®, wherek is some numerical constant.
(k=2/5 for a solid sphere arkl= 2/3 for a spherical shell.)

Let’s T is the period, witi; being the initial period of the star aidbeing the period of the

. 2n
neutron star. The star’s angular speed is glvewby? :

la, =1 a,
I 2T 2T
By substitution fore. and | we get kMR? el kMR T
i f
Hence:
R 2
R
using the given numbers we get T, = 023s

EXAMPLE 7.13 Steel wire, length of 20 cm was behaaight angle such that the sides of
the wire are the same size and are oriented ir,thexis direction. Bending point is identical
to the beginning of the coordinate system. Deteentive center of mass of the bent wire in

the given coordinate system. (2, 5cm; 2, 5 crmb) ¢

EXAMPLE 7.14 The system of bodies is formed by spheres of different mass, = 3 kg
andmy = 12 kg. If you know that the first sphere moveshwihe speed; =5m/s and the other

is at rest, determine the speed of movement of¢héer of mass of the system=1m/s)

EXAMPLE 7.15 You have been asked to hang a megal som a single vertical string. The

sign has the triangular shape shown in Figure 7.7.
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Fig.7.7 Hanging metal sign.

The bottom of the sign is to be parallel to theugich At what distance from the left end of
the sign should you attach the support stringg & %a)
EXAMPLE 7.16 A 1500-kg car traveling east with aeeg of 25.0 m/s collides at an

intersection with a 2500-kg truck traveling nortragspeed of 20.0 m/s as shown in Fig.7.8.
y v
Find the direction and magnitude of the velocity  25im/s

the wreckage after the collision, assuming t ﬁ A "
vehicles stick together after the collision.
20 jT

(v=15.6m &, 6 = 53.1°)

m/s

Fig.7.8 Cars’ collision
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8 EQUILIBRIUM AND ELASTICITY

Real materials are not perfectly rigid. When sulgieédo forces, they deform. If a substance
deforms when subjected to a force, but returnsstamitial shape when the force is removed,
the substance is elastic.
Thestressapplied to a material is the force per unit angaliad to the material:

Stress= F/A
It is measured in Nifior pascals (Pa)
Strain is the ratio of extension to original length, &#shno units as it is a ratio of two lengths

measured in metres.

Strain=AL/L

An elastic modulus ormodulus of elasticity, is a number that measures an object or
substance's resistance to being deformed elagti¢adl, non-permanently) when a force is

applied to it.
Elastic modulus=(stresg/(strain

Tensile stress (or tensionis the stress state leading to expansion. The w@lointhe material
stays constant. When equal and opposite forceappied on a body, then the stress due to
this force is called tensile stress. Young’'s modiis defined as :

_tensile stress _ F | A

= - — = , the Sl unit is Pa
fensile strain AL/ L

The shear modulusdescribes an object's tendency to shear (the dafmn of shape at
constant volume) when acted upon by opposing forfsappose a piece of material, in the
form of a rectangular block (like a brick), has daee fixed and a forcé applied to the
opposite face, of areA. If the two faces are separated by distan@nd the sheared face
movesAx, the shear modulus is defined:

_shearstress _ F/A

= , the Sl unit is Pa
sheer strain Ax/h

The bulk modulu$3 describes volumetric elasticity, or the tendentcgroobject to deform in

all directions when uniformly loaded in all diremtis; it is defined as volumetric stress over
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volumetric strain, and is the inverse of comprabgibThe bulk modulus is an extension of

Young's modulus to three dimensions.

B = volume stress _  F/A _  p
volume strain AV |V AV IV’

the Sl unit is Pa

The negative sign is inserted so tBais a positive number becaus¥ is negative due to a
positive pressure. In some tables of data the sevef B, called the compressibility, is
tabulated. A large bulk modulus means that it fBadilt to compress the material, whereas a
large compressibility means, that it is easy to pa@ss the material.

EXAMPLE 8.1 Place a 7.0 m uniform, 150 N ladderiagiaa frictionless wall at an angle of
75°. What are the reaction forces at the groundvaalll and the minimum coefficient of
friction of the ground?

Solution. Figure 8.1 shows the ladder with the Nofcting down at the center of the ladder
and the sides of the triangle formed by the laddati, and ground.

m

6.8m

75% 1.8m

Fig.8.1 Free body diagram

ZFXZO; F, =R,
YR =0; F, =150

ZTZO; the torque on the ladder is taken about the pwoimére the ladder contacts the

ground. This choice eliminates two variables froomque statement. As torque is the
component of the force at right angles to the larar times that lever arm.
Hence

(150N cos75°)35m = (R, cos15°)7,0m
As:F, =R, and R, = /F,
LM =019
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EXAMPLE 8.2 To moor a ship, a sailor wraps a ropmuad a bollard (a cylindrical post). By
pulling with a small forceél';, he can control a much larger tensibnon the end of the rope
attached to the ship because of the friction betwihe rope and the bollard. The coefficient
of friction between the rope and the bollard:is 0.2. If the sailor pulls with 400 N, how

many turns are needed if he is to exert a for4gd00 N on the ship?

T
1/2d6 1/2d6
T

> T+dT

Fig.8.2 Thebollard and the free body diagram
Solution
If we look at a small segment of rope that subtemdsnall angle @ Because of friction the

tension at one end Tsand at the other end slightly larger dT. Applying X F, = 0:
N —Tsin(d6/2) — (T + dT) sin(d6/2) =0
Using small angle approximatiorsin(dd/2)~d6/2 and neglecting the very small term
dT d6/2 gives: N =Tdé
The friction force is: Fp = puN = uTdé
Applying). F, = 0: (T +dT) cos(df/2) — Ff — T cos(df/2) =0

Small angle approximatiotos(d6/2)~ 1 gives:
dT
dT = Ff = uTde, or T = udé

If the tensions at the two ends dreandT,, then
T2 dT B2 T,
f —=uf dé or In—=u(6,—6,)
T, T o, T
© 9)_11 Tz_ 1 24,000
2= = N T 02 M 400
20.5rad
27 rad/rev

=5-.1n60 = 20.5 rad

= 3.3 rev
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In this way sailors control the ship, they can estwly release it, and then the force on the
other side will start to move. But you cannot tliings with it. The frictional forces for the

rope will flip over. In other words, what is noliy in our calculations will becomBg.

EXAMPLE 8.3 To span the space architects used r@seahicircular) arch and in about A.D.
1100 the pointed arch came into use and becamieateark of the great Gothic cathedrals.
To make an accurate analysis of a stone arch te gifficult in practice. But if we make
some simplifying assumptions, we can show why threzbntal component of the force at the
base is less for a pointed arch than for a roural &igure 8.3 shows a round arch and a
pointed arch, each with an 8 m span. The heigkthefound arch is thus 4.0 m. Pointed arch
is larger and has been chosen to be 8.0 m. Eac¢h samgports a weight of 1210*N

Calculate the horizontal force for each arch.

2.0 m 20m
6.0x10* N 6.0x10* N 6.0x10* N p | 6.0x10* N
— /A
’////— / /
/’ Vil // /
/
/ i 4-3_“1 // 8om
L <y i/
F,=6.0<10*N H /
Li 1 -« F,
F,=6.0 x10*N
f= 8.0m ~
@
f—-80m—~
(b)

Fig.8.3 Forces in round (a) and pointed (b) arch
Solution
For simplicity let us divide the arches into twortsa(each 6.0° N). For the arch to be in
equilibrium, each of the supports must exert anarviorce of 6.0° N. Each support also
exerts a horizontal forc&y, at the base of the arch, and it is this we wardalculate. We
focus only on the right half of each arch. We sptat to zero the total torque calculated about
the apex of the arch due to the forces exertedhainhalf arch, as if there were a hinge at the
apex.
For the round arch, the torque equation » M =0, is as follows:

(4m)(6-10*N)— (2m)(6-10*N) — (4m)(Fy) =0
ThusFy =3 - 10* N for the round arch.
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For the pointed arch, the torque equation is:
(4m)(6-10*N) — (2m)(6-10*N) — (8 m)(Fy) =0
For the pointed arch we gEt; = 1,5 - 10* N and this is only half as much as for the round

arch.

EXAMPLE 8.4 The Leaning Tower of Pisa is 55 m &aild about 7.0 m in diameter. The top
is 4.5 m off cente.. Is the tower in stable equilim? If so, how much farther can it lean
befor ! it becomes unstable? Assume the towerusiédrm composition.

Solution

We know that an object whose center of gravity-€@hove its base of support will be stable
if a vertical line projected downward from the Cali$ within the base of support. For the
tower, the base of support is a circle of radi&sr. If the top is 4.5 m off center, then the
CG will be 2.25 m off center, and a vertical lirmahward from the CG will be 2.25 m from
the center of the base. Thus the tower is in statpaibrium.

To be unstable, the CG has to be more than 3.5f meater, and thus the top must be more
than 7.0 m off center. Thus the top will have tanle2.5 m further to reach the verge of

instability.

EXAMPLE 8.5 Four bricks arc to be stacked at thgeedf a table, each brick overhanging
the one below it, so that the top brick extendfaass possible beyond the edge of the table.
(a) To achieve this, show that successive brickstrextend no more than (starting at the top)
1/2, 1/4, 1/6, and 1/8 of their length beyond tme d®elow (Fig. 8.7). (b) Is the top brick
completely beyond the base? (c) Determine a gefm@ralula for the maximum total distance
spanned by bricks if they are to remain stable, (d) A buildesnts to construct a corbeled
arch based on the principle of stability discusse@) and (c) above. What minimum number
of bricks, each 0.30 m long, is needed if the &db span 1.0 m?
Solution
(a) The maximum distance for the first brick (1) to mon the second brick will be
when the CM of the first brick will be directly ovéhe edge of the second brick. We
getx;=L/2
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Fig.8.4 Maximum span for 2 bricks Fig.8.5 Maximum span for 3 bricks

The maximum distance for the top two bricks to renman the third brick will be reached
when the center of mass of the top two bricksiieatliy over the edge of the third brick. The
CM of the top two bricks is in the middle of th€lM's and it meank/4 from the right edge
of the second brick. Thus = L/4.

Notice that each time thecoordinate of CM of upper bricks is over the edge of the
brick number iG+1) or the base.
So the maximum distance for the top three bricksetnain on the brick number 4 will be
reached when the center of mass of the top threksbis directly over the edge of brick
number 4. The CM of the top three bricks is foualdtive to the center of brick 3 by:

m-0+2-m-(L/2) _

CM3 = am

L/3, or L/6 from the right edge of the brick 350 x3=L/6,

wherem s the mass of one brick.

— ] — < L >
L1 D | [1 .
| 2 e X | X [ 2 e X | x
[+ X~ [+ xIx,
L4 @ |x, [ 4 o X |X;
I P,

Fig.8.6 Maximum span for 4 bricks  Fig.8.7 Maxm span for 4 bricks over the edge of the table

For four bricks to remain on the table, the CM o four bricks has to be directly over the
edge of the table. The CM found relative to theteeaf brick 4 will be:

CM4 _ m-0+3-2-(L/2)

= 3L/8, orL/8 from the right edge of the brick 4 ang= L/8.
From the results above, the distance from the efltjee table to the right edge of brick 1 is:
Xq+ X3+ X +x = (L/8) + L/6) + L/4) + L/2) =28./24 >L
Since this distance is greater tharthe first brick is completely beyond the edgéhef table.
(c) Thex-coordinate of CM oh bricks relative to the center of brick numimeran be
according to previous explanation calculated as:
=m-O+(n—1)-m-(L/2) =Ln—1

CM
n n-m 2.n
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So the spaw; is: x; = %‘ M, = % _ Lr;_—nl —1 n—g‘zn—n _ ;n

The general formula for the total distance sparimedbricks over an edge is:

L L L L L L 1
x1+ x2+x3+ ....... +xn:(5)+(Z)+(g)+ ...... (Z): ?’zlzzz ?217

We got so called harmonic series.

(d)The arch is to span 1.0 m, so the span fromsaeewill be 0.50 m. We have to solve

n

n
ZL_ 0.3>05
£.2i Lu2i T
=1

i=1

Tab. 8.1 Partial sums of foregoing harmonic series

il 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2(0,15|0,225|0,275]0,313 | 0,343 | 0,368 | 0,389 | 0,408 | 0,424 | 0,439 | 0,453 | 0,465 | 0,477 | 0,488 | 0,498 | 0,507

The table of partial sums of this harmonic seriégtvwe calculated fok = 0.3 andi = 1 to 16.
Evaluation of this table shows that 15 bricks splan the distance of 0.498 m and 16 bricks
will span a distance of 0.507 m. Therefore we hawake 16 bricks for each half-span, plus 1

brick as the base on each side, which means thleafo84 bricks.

EXAMPLE 8.6 A steel beam used in the constructiba bridge is 10.2 m long with a cross-
sectional ared of 0.12 nf. It is mounted between two concrete abutments mdtiioom for
expansion. When the temperature raises 10° C,asbeam will expand in length by 1.2 mm
if it is free to do so. What force must be exeigdthe concrete to keep this expansion from
happening? Young's modulus for steel i&@* N/m?.
Solution

1.2-1073

F= Y(A—L>A = (2-10" N/m?) (=2 ™M) (0.12 m?) = 2.8 - 10°N
L 102m ' '

This force will crack the concrete. The forces irea in thermal expansion can be huge,
which is why it is necessary to leave expansiortspa joints in large structures like bridges
and buildings. And to make dilatation arcs in langes for heating, cooling etc.

EXAMPLE 8.7 Is the Young's Modulus for a bungeedtamaller or larger than that for the
ordinary rope?

Solution

The Young's modulus for a bungee cord is much smé#flan that for ordinary rope. The
bungee cord stretches relatively easily, comparedrdinary rope. From the equation

FI/A . .
E :m we can see that the value of Young's modulusvsrgely proportional to the

relative change in length of a material under aitan Since the change in length of a bungee
cord is much larger than that of an ordinary rdpether conditions are identical (stressing
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force, unstretched length, cross-sectional areap# or cord), it must have a smaller Young's
modulus.

EXAMPLE 8.8 A certain person’s biceps muscle hasaximum cross-sectional area of 12
cn?. What is the stress in the muscle if it exerterad of 300 N? (2:50° N/m?)

EXAMPLE 8.9 A 500 kg mass is hung from a 3 m steee with a cross-sectional area of
0.15 cm. How much does the wire stretch? Neglect the nudsthe wire. (0.44 cm for
Y = (2-10 N/m?)

EXAMPLE 8.10 A cube of Jello 6 cm on a side sitsymur plate. You exert a horizontal
force of 0.20 N on the top surface parallel toshgace and observe a sideways displacement
of 5 mm. What is the shear modulus of the Jell@® (§/nf)

EXAMPLE 8.11 A marble column of cross-sectionalaafe2 ni supports a mass 25 000 kg.
Young’s Modulus of marble is5 - 101°Pa . (a) What is the stress within the column? (b)
What is the strain2(- 10° Pa ; 4.1 - 107°)
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9 FLUID MECHANICS

Fluids are liquids or gasses. Fluids can be comspiesor incompressible. This is the big
difference between liquids and gases, because lideas are generally incompressible and
without inner friction, while ideal gases are cosgsible and without inner frictioWe can
divide the fluid mechanics into hydrostatics anddreglynamics. When talking about
hydrostatics we can consider liquids to be ideainasr frictions plays role only by liquid
flow.
Fluids at rest — hydrostatics
Pressurep is defined as force per unit area, where the férde understood to be acting
perpendicular to the surface area p=F/A
The SI unit of pressure is Nfrwhich has the name Pascal (Pa); 1 Pa = *N/m
An experimental fact is that fluid exerts a pressur all directions. Another important
property of fluid at rest is that the force duefltod pressure always acts perpendicularly to
any surface which is in contact with it.
Hence the pressupeis defined as

p=F/A=pAgh/A =pgh
This equation tells us what the pressure is atrdept the liquid due to the liquid itself. In an
open container the pressure in depthk:

p =po +pgh
In this equation we have the presspgalue to the atmosphere above the liquid surface plu
the pressure of the liquid in degth
Pascal's lawstates that when there is an increase in presswey point in a confined fluid,
there is an equal increase at every other poititarcontainer.
Archimedes' principle: Any object, wholly or partially immersed in flyisds buoyed up by
force equal to the weight of the fluid displacedtby object.

Surface tension) : The surface of liquid acts like it is under tiems and this tension, acting

parallel to the surface, arises from the attradiivee between the molecules.

This effect is caused by so called surface tengioit is defined as the force F per unit
length that acts across any line in a surface;

y=F/l The unit of the surface tension is yI[I=N/m
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Fluids in motion - hydrodynamics
Fluids display properties such as: not resistingprde@ation, or resisting it only lightly
(viscosity), and the ability to flow (also describas the ability to take on the shape of the
container).This also means that all fluids havepttoperty of fluidity.
The equation of continuity: When fluid is in motion, it must move in such aytaat the
mass is conserved. The mass flow rate is simplyrdte at which mass flows past a given
point, so it's the total mass flowing past dividsothe time interval
Am _ pAV _ pAAI
At At

where 0O is the density,is the velocity and\ the cross sectional area.

= pAv PV A= PV, A,

Generally, the density stays constant and themsiitly the flow rate Av) that is constant.
This is a statement of the principle of mass corsem for a steady, one-dimensional flow,
with one inlet and one outlet. This equation ideththe continuity equation for steady one-
dimensional flow. When there are many inlets anttets) the net mass flow must be zero.
Bernoulli's equation: In steady flow of ideal fluid in gravitational fetlis the sum of kinetic
and potential energy of unit volume and presswegathe line of current constant.

(1/2)ov? + pgh+ p =const
In which the first member expresses the kinetiagyef unit volume, the second is potential
energy of unit volume anplis pressure. This equation must have the same alany point
of the current tube.
EXAMPLE 9.1 Atmospheric pressure in various heights
Solution
The equationp = py + pgh deals with incompressible fluids, the air is coagsible. Let us
imagine an element of air of ar@aand height d with density, so its weight ipgAdh. The
up-force on the element from belowpid and the down-force i& + dp)A + pgAdh. At the
hydrostatic balance:

pA— (p +dp)A — pgAdh =0

dp
an =~ P9I
According to ideal gas law p = -, whereM = 0.02896 kg mal is the middle molar mass

of atmospheric gaseR, = 8.314 J- Kl- mol ! is the universal gas constant ahthe absolute
temperature. So:
dp Mg dp Mg

dn -~ PR or » ~ RT
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Integrating this equation among searching heigrgpeactively pressures gives:
p(h) 4 h
f P f M9 4p = M9 dn
p(he) P RT

assuming M, g, and T are constant, hence atmosphere is isotherm. This simplyfying gives:

p(h)\ Mg _ Mg
In <p(h0)> = _ﬁ(h - hO) = _ﬁAh

=e RT or p(h) =p(hy)e RT-" =1013,25 e 8432 (hPa)
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Fig. 9.1 Atmospheric air pressure vs altitude.

Figure 9.1 shows that even this simple approximagiwes good results for small altitudes.

EXAMPLE 9.2 An iceberg floating in seawater is extrely dangerous because most of the
ice is below the surface. This hidden ice can daaghip that is still a considerable distance
from the visible ice. What fraction of the icebdigs below the water level?
Solution
The weight of the iceberg & = o,V;g, whereg; = 917 kg - m~3 and V; is the volume of the
whole iceberg. The magnitude of the upward buof@me equals the weight of the displaced
waterFy = o, V;,g where V,,, the volume of the displaced water, is equal éoviblume of the
ice beneath the water ang, = 1030kg-m™3 is the density of the seawater. Because
0iVig = owV,g, the fractionf of ice beneath the water's surface is

; Vo 917kg-m7®

V; o, 1030kg-m3

f =0.89 or 89 %.
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EXAMPLE 9.3 A cube of wood having a side dimens@gisr 20.0 cm and a densipyype=
650 kg/nt floats on water, (a) What is the distarttéom the horizontal top surface of the
cube to the water level? (b) How much lead weighsinibe placed on top of the cube so that

its top is just level with the water?

Solution
(a)
Meuve = Veube " Qcube = a®- Ocube = 5-2 kg Fbuoy
Fbuoy = Meype * 9 d
Owater * Vdispl g = Meype * 9
Vdispl = Tleube = a? (a—d) M ped

water
Fig.9.2 Cube on water

Meube  _ o m — >-2kg —0.07m

d=q——ube
& 220, rer 0.04 m2 - 1000 kg m—3

(b) The massn;, .44 Must be equal to the extra buoyant force we woudt fppm

submerging the part of the cube currently aboveewat

Mio add * 9 = COwater * Vabove water * 9

Mio add = Owater * Vabove water = 1000 kgm™3.0.07 - 0.2+ 0.2 m3 = 2.8 kg

EXAMPLE 9.4 A large storage tank is filled to adpietihy. The tank is punctured at a height
above the bottom of the tank. Find an expressiondp how far from the tank the exiting
stream lands and (b) the maximum for it

(a) The Bernoulli's principle for fluid at heightin the tank and after the hole

2

2

pv pv —-—

Pa+pglho—h) +—==pa +0+— h TN
2 )

v =4/2g(hy — h)

Fig.9.3 A tank filled to a heighth
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We neglectew, — 0 since the tank diameter is much greater than tr@endiameter. This is
the Torricelli's equation relating the speed ofdlflowing out of an opening to the height of
fluid above the opening.

The fluid after the opening behaves as the hot&gmojectile motion:

gt? 2h
= or t= |—

=vt, h ,
X=v > 7

Using the Torricelli's equation and the express$arr we receive:

x =vt =+/2g(hy — h)\[% = 24/ (hy — h)h

(b) An extreme of this function we find by derivatigmaccording tch:
%=%(2 (ho — )h) =M(—h+h0—h) _ oz 2h
V(o = )R V(o = M)A
So hyo —2h =0, or h = hy/2.
The stream receives the maximal distance froméhk when the opening is in the middle of
the fluid height.

EXAMPLE 9.5 In humans, blood flows from the heantoi aorta, from which it passes into
the major arteries. These branch into small agemeénich in turn branch into myriads of
capillaries. The blood then returns through vemshie heart. The radius of aorta is about
1.2 cm, and the blood passing through it has adspkabout 40 cm/s. A typical capillary has
a radius of about - 10~* cm, and blood flows through it at a speed of aldbut0~* m/s.
Estimate the number of capillaries in a body.
Solution
We assume the density of blood is constant. By temuaf continuity, the volume flow rate
in the aorta must equal the volume flow rate thioalj the capillaries. The total area of all
capillaries is given by the area of one capillamtiplied by the total numbeX of capillaries.
Let A,be the area of the aorta anAg, the area of alN capillaries. Them,, = Nmr2. From
the equation of continuity we have

V. Aye = VA, or v.Nmr? = v,nr?

So

v ( 0.4 m/s ) 1L2-107%m\"
v,r2 \5-10~*m/s/\ 4-10"°m
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There are approximately 10 billion capillaries e thuman body.

EXAMPLE 9.6 Water circulates throughout a housa warm—-water heating system. If the

water is pumped at a speed of 0.5 m/s through m4diameter pipe in basement under

a pressure of 300 kPa, what will be the flow speed pressure in a 2.6 cm—diameter pipe on
the second floor 5 m above? Assume the pipes ddivioe into branches.

Solution

p; = 3-10° Pa, y1 =0, v, =05m/s, y, =h=5m

A, 7 0.022
lel = UzAz i Uz = le_z = V. m = 118 m/S
2 2
pv pv
Pt PGyt =Pz +pgy2+
2 2
pvy  pu;
P2 =P1+PIY1 +T—T—P93’z =

1000
3-10°+0+ T(O.S2 —1.18%) —1000-9.8-5 = 2.5-10° Pa

EXAMPLE 9.7 A piece of aluminum with mass 1.00 kglalensity 2 700 kg/fis suspended
from a string and then completely immersed in at@oer of water .Calculate the tension in
the string (a) before and (b) after the metal imarsed. The density of water is 1 000 kij/m
((@) 9. 61N, (b) 6.17 N)

EXAMPLE 9.8 Consider 2 identical pails of watetdd to the brim. One pail contains only
water, the other has a piece of wood floating oWibich pail has the greater weight?
Solution

The buoyant force on the wood object equals theghtebf the wood object (static
equilibrium). Also the buoyant force is equal toe thweight of the displaced water
(Archimedes’ principle). In other words, the weigtitwood is the same as the weight of the

spilled water. Therefore, putting the wood doesamainge the weight of the pail.

EXAMPLE 9.9 Water flows through a fire hose of dieter 6.33 cm at a rate of 0.012%1s.
The fire hose ends in a nozzle with an inner diamef 2.20 cm. What is the speed at

which the water exits the nozzle? (31.6 m/s)

EXAMPLE 9.10 A 70 kg ancient statue lies at thettwot of the sea. Its volume is
3-10* cn. How much force is needed to lift it? (392.4 N)
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