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Introduction

Although our natural perception of the world where we live in is three-dimensional, a powerful

tool for modelling our reality – geospatial information systems (GIS) – has been anchored

in two dimensions, in a projection of Earth’s surface into horizontal plane. The very first

three-dimensional thoughts appeared in late 80ties.

There is also the difference in approach to vertical coordinate. So called 2,5 GIS deals

with geoobjects with position given by coordinates in planar projection. If these geoobjects

are described also using height data, these data are considered as attribute values only.

This approach is suitable for representing phenomena located on the Earth surface. To deal

with vertically stratified phenomena as archaeological or geological trench, it is necessary to

describe data position in three-dimensional space.

This approach requires special data types, theoretical background and topology – as desc-

ribed more detailed in following chapters, there is still no complex solution of 3D GIS, just

many partial implementations into existing GIS software. One of the software products that

provides support not only for vector but also volumetric analyses, is GRASS GIS (GRASS

Development Team, 2014). This thesis deals with development of GRASS GIS modules that

operate with the data in three-dimensional space.

In the thesis, there is summarized basic knowledge about 3D GIS, especially theore-

tical background of kriging in three-dimensional space, which differs from two-dimensional

solution in variogram modelling, and mathematical background of statistical method Nearest

Neighbour Analysis. Analytical tools, modules of open-source software GRASS GIS (GRASS

Development Team, 2014) that are developed as the main goal of the thesis are based on

these topics. Description of v.kriging and v.nnstat modules is included too. Practical usage

of the modules is demonstrated in several case studies with statistical tests of the results

and possibilities of optimization of the modules using spatial indexes.

1 Review

3D GIS was first described in 1989 and since early 90–ties, it has been developed in several

partial solutions useful in geology, landscape architecture, ecology, hydrology etc. There are

several papers dealing with topic of 3D GIS architecture and most of them propose web-

based solutions of 3D GIS. Another branch of authors have been dealing with topological

modelling in 3D GIS.

The development of 3D GIS has been gradual because three-dimensional objects need a

special approach (in geometrical, topological and graphical sense) that differs from infras-

tructure usually implemented in GIS. Some of current softwares support 3D data, but only

those may be considered as 3D GIS which enable to perform spatial analyses on 3D data.

Open-source software GRASS GIS (GRASS Development Team, 2014) is one of the few GIS

softwares that support volume data (3D vectors too).
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1.1 Spatial statistics in 3D GIS

Statistical modelling of spatial data considers not just values of given phenomenon, but

also positions of points to which the values are located. The values are supposed to be

function of position – they are spatially correlated. This property is very useful in estimation,

prediction and design that are the most important tasks of spatial statistics. Positions are

defined in d -dimensional Euclidean space, mostly in two-dimensional. Idea of extension into

three-dimensional space is usually simple, but it may be complicated because it should

consider naturally different behaviour of phenomena in horizontal and vertical direction.

1.1.1 Variogram

Empirical variogram shows how the data behave according to distance which is usually

supposed to be two-dimensional. To deal with variogram in three-dimensional space, several

approaches have been proposed. (Myers and Journel, 1990) describes nested variogram

which is given as a sum of data dependence of distances in each of n dimensions (n is usually

equal to 2 or 3). This solution considers isotropic variograms only. In (Fabbri and Trevisani,

2005), there is similar approach to 3D variogram described, but the authors tested (highly)

anisotropic 3D variogram.

Univariate variogram with anisotropic ratio was described e.g. in (Zimmerman,

1993). Author summarizes these types of anisotropy in two-dimensional space (analogically,

they may be useful in three-dimensional space):

• geometric anisotropy depends on range that varies with direction. Rose diagram

should be approximately elliptic and the axes of anisotropy are represented by major

and minor axis of the ellipse.

• zonal anisotropy depends on sill (and range), but (Isaaks and Srivastava, 1989)

define zonal anisotropy only with sill dependent on direction.

Most of papers that describe three-dimensional variogram are connected with geological

modelling. It is also possible to compute 2D and 3D variogram in (Pebesma, 2004) under

statistical open-source software R (R Core Team, 2013), but none of them is implemented

in (3D) GIS environment.

1.1.2 Nearest Neighbour Analysis

Nearest Neighbour Analysis is the method of spatial statistics that helps to assess whether

points located in tested area are distributed randomly, in clusters or in regular pattern in two-

or three-dimensional space. Proceedings (Hertz, 1909) and (Chandrasekhar, 1943, p. 86–87)

outline the principle of method in three-dimensional space and Nearest Neighbour Analysis

for two-dimensional space was described in (Clark and Evans, 1954). The method (2D) have

been implemented in ArcGIS (ESRI, 2013a).
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1.2 Interpolations in 3D GIS

In trivariate interpolation, unknown values are estimated using function of coordinates x, y

and also z that is vertical coordinate, not just attribute. Also output is three-dimensional, the

voxler is derived instead of raster. Open-source GRASS GIS (GRASS Development Team,

2014) provides the module v.vol.rst (Mitáš et al., 2014) that is based on regularized spline

with tension (Mitáš and Mitášová, 1988).

2 Objectives

The dissertation thesis deals with 3D principles of selected spatial analyses and with de-

velopment of modules for open-source software GRASS GIS (GRASS Development Team,

2014). GRASS GIS (GRASS Development Team, 2014) has been used because it has the

widest support of 3D GIS functionality among the open-source solutions, open source code

and also large community of developers and contributors.

• Development of module v.kriging

– Theoretical background of 3D kriging, especially 3D variogram deriving

– Implementation into module v.kriging

– Improvement of the module (using anisotropy and interactive variogram model-

ling)

– Testing on various 3D data

• Development of module v.nnstat

– Extension of existing theoretical background

– Implementation into module v.nnstat

– Numerical tests

• Improvements (efficiency, processing time)

Note: Part of objectives (development of module to perform 3D buffer and implementa-

tion of fuzzy logic) have been deleted because of issues that should be emerged in v.kriging

and v.nnstat.

Expected contents

• module v.kriging for GRASS GIS (GRASS Development Team, 2014) for interpola-

ting volumes from point data using kriging in three-dimensional space with extensions

(anisotropic functions, interactive variogram modelling etc.)

• module v.nnstat for GRASS GIS (GRASS Development Team, 2014) for performing

Nearest Neighbour Analysis in three-dimensional space
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3 Theoretical background

In this chapter, there will be explained theoretical backgrounds of two main topics of this

dissertation thesis – interpolation method kriging and method of spatial statistics Nearest

Neighbour Analysis in three-dimensional space.

3.1 Kriging in three-dimensional space

Kriging is interpolation method that uses geostatistical approach to estimate unknown va-

lues. Interpolation is preceded by analysis of spatial structure of the data – variogram mo-

delling that gives information about spatial variability of the sample (Wackernagel, 2003).

The theory of 3D kriging design in this thesis is based on Ordinary kriging in two-dimen-

sional space described e.g. in (Wackernagel, 2003).

3.1.1 Basic principle of ordinary kriging

Unknown value Ŵi located on output point i is estimated as:

Ŵi =
n∑
j=1

wj ·Wj (3.1)

In this equation, n is number of input points and j means index of each one. Value located

on each of input points is represented by Wj and it is weighted using wj. The weights are

obtained solving the system of linear equations:
γ(x1 − x1) . . . γ(x1 − xn) 1

...
. . .

...
...

γ(xn − x1) . . . γ(xn − xn) 1

1 . . . 1 0

 ·


wOK1
...

wOKn
µOK

 =


γ(x1 − x0)

...

γ(xn − x0)
1

 (3.2)

The large matrix G on the left side contains the dissimilarities between values located on the

input points. They are based on variogram (see Chapter 1.1.1). The ones in the last matrix

row and column express the condition that sum of weights w (vector in the left side) should

be equal to one:
n∑
i=1

wi = 1 (3.3)

This condition makes the differences of the input and interpolated value on the input point

to be equal to zero. Constant µOK at the bottom of the w vector means Lagrange multiplier

to attach the condition (Eq. 3.3) to the system of linear equations.

To compute the dissimilarities between input value and unknown value on the right side,

it is necessary to solve the system of linear equations at first:

w = G−1 · g0 (3.4)

Interpolation using kriging method usually consists of these steps:
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• Computing of experimental and theoretical variogram Matrix of dissimilarities

at input points G is derived. The dissimilarities between input and output points g0

are estimated to solve system of the equations (Eq. 3.2). Vector g0 is unknown in this

phase of computing and we estimate its values using variogram.

Variogram γ(h) expresses dependence of change in values of random variable and

of the distance between the pairs of the points according to equation (Wackernagel,

2003):

γ(h) = 0.5·(z(xα + h)− z(xα))2 (3.5)

xα means the position of the point in space, h is the vector connecting the pair of the

points and γ(h) expresses dissimilarity between values located on the points connected

by vector h. If the distances between points that are included in the vector h, are split

into k classes that are characterized by vector length of hk, average values of γk(h),

which are computed from γ(h) characterizing the given interval hk, create experimental

variogram.

Function that approximates discrete values of experimental variogram is called the-

oretical variogram. Most commonly used and described types1 are linear, exponential,

spherical and Gaussian (Wackernagel, 2003). Their shape depends on sill (the limit

value of γ at higher values of h), range (distance that determines the zone of spatial

correlation in the regionalized variable (Omre, 1984)) and nugget effect (the degree of

discontinuity in the regionalized variable (Omre, 1984)).

If experimental variogram rises after reaching sill and the fitting function is parabolic,

this indicates that the values of modelled phenomenon are spatially correlated and

there is some trend in the data. It is necessary to eliminate the trend and perform

variogram modelling just using the residuals.

• Estimation of optimal weights of input points according to system of equations

(Eq. 3.2) using dissimilarities approximated by theoretical variogram.

• Estimation of unknown value located on output point according to Eq. 3.1. Then

estimation of next interpolated values continues.

The essential difference between interpolation using ordinary kriging in two- and three-di-

mensional space will be in variogram computing. In 2D space, it is function of horizontal

distances between pair of the points only, but in 3D also vertical distance must be conside-

red. Computation of G matrix and of g0 vector depends on variogram, but the principle is

the same for both cases.

1If the curve of theoretical variogram is parabolic, this indicates that the values of modelled phenomena

are strongly spatially correlated – parabolic variogram shows some trend in the data that should be also

eliminated in further processing.
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3.1.2 Variogram modelling in three-dimensional space

These main approaches to compute 3D variogram have been described:

• nested variogram according to (Myers and Journel, 1990):

γ (x, y) = γ1 (x) + γ2 (y) = γ (h,∆z) = γ1 (h) + γ2 (∆z) (3.6)

where γ1 (x), γ2 (y) are isotropic variograms in 2D space, but we can assume that x represents

horizontal distance and y can be vertical distance.

• anisotropic variogram according to (Facas et al., 2010):

γ (x, y) = γ
(√

x2 + (R · y)2
)

(3.7)

where R = a/b – ratio of maximum range to minimum range. This approach is useful in case

of geometrical anisotropy, when just ranges differ in horizontal and vertical direction. If also

sills are different, it indicates so-called zonal anisotropy and according to e.g. (Gringarten

and Deutsch, 2001), it is useful to use nested variogram in such a situation (Eq. 3.6).

3.2 Nearest Neighbour Analysis in three-dimensional space

Nearest Neighbour Analysis indicates randomness of points distribution in a sample. It can

be useful in natural sciences or in solving social problems (e.g. crime analysis). If vertically

divided phenomenon is analysed (e.g. artifacts in archaeological trench), three-dimensional

distance should be considered in Nearest Neighbour Analysis.

There are N points located in the area of interest. Their average isotropic distance bet-

ween the nearest neighbours rA is expressed using arithmetic mean. If the points are ran-

domly distributed, average isotropic distance of the nearest neighbours in three-dimensional

space is expected to be (according to (Chandrasekhar, 1943, p. 86–87)):

rE =

∞∫
0

4πn · r3 · e−
4πn
3
·r3dr =

1

3

√
4πn
3

∞∫
0

e−x · 3
√
xdx =

1

3

√
4πn
3

· Γ(
4

3
) (3.8)

where n is density of points in volume unit and Γ(4
3
) is the gamma function2. This formula is

based on the probability that the nearest neighbour of a point is located on the boundary of

its spherical surrounding with radius r. The measure of degree to which observed points are

randomly distributed R is expressed as the ratio of observed and expected distance (Clark

and Evans, 1954) and it should be statistically tested.

According to (Clark and Evans, 1954), statistical significance of the deviation from a ran-

dom distribution of points (clustering or separation) can be tested using Student’s t-test of

significance of the mean (Hughes and Hase, 2010). There is standard variate of the normal

curve as test statistics and it depends on standard deviation of the average distance expected

2Gamma function Γ(n) means extension of factorial for complex and real numbers (Weisstein, 2013).
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in case of randomly distributed points σrE . This value was derived in past for two-dimensi-

onal space (Clark and Evans, 1954), but not for three-dimensional space. 3D solution has

been derived analogically (Stopková, 2013).

Null hypothesis H0: rA = rE means that points are randomly distributed in the space

(according to (ESRI, 2012)). Alternative hypothesis Ha: rA < rE ∨ rA > rE and statistical

tables of the cumulative standard normal distribution are base for determination of critical

values W = (−∞, uα/2) ∪ (u(1−α/2),∞). If null hypothesis is rejected with positive values of

the test statistic, the points are assumed to be separated (patterned), otherwise (rejection

with negative values) the points are assumed to be clustered.

4 Implementation

In this chapter, the modules for open-source software GRASS GIS (GRASS Development

Team, 2014) will be described. There will be shown also results of case studies.

4.1 Kriging in 3D space

The structure of the module is shown here and also possibilities of variogram modelling are

outlined in this chapter. Issues that emerged in module testing are described together with

proposed solutions.

4.1.1 Module v.kriging in GRASS GIS

Interpolation was divided into three phases because of anisotropy detection that needs also

interaction of the user:

• initial phase provides variogram in horizontal and vertical direction. In this phase,

basic properties of experimental variogram are computed that are written to temporary

text files for usage in following phases.

• middle phase is based on properties of experimental variograms in horizontal and

vertical direction. The user should empirically set up ranges of both variograms (sills

have been computed in initial phase and nugget effect is not important here).

According to sills, the type of variogram function is chosen if not set up by the user.

If sills difference is greater than 5% of greater of the sills, bivariate function should

be used because of zonal anisotropy in the dataset. Otherwise, anisotropic function

is appropriate to model just geometric anisotropy. Anisotropy ratio is derived as a

ratio of ranges in horizontal and vertical direction. There may be chosen type of func-

tion (univariate or bivariate) according to sill ratio or user’s opinion. Output shows

experimental variogram anisotropic or bivariate.
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• final phase. The user should set up parameters of anisotropic variogram (nugget

effect and range – sill has been computed in initial phase, but it may be changed

too). Parameters of bivariate function are computed using Least Mean Square method.

Then, theoretical variogram is created and the values are interpolated.

Here may be seen the basic structure of the code:

• graphical user interface with options for:

– performing 2D, 2,5D or 3D interpolation. This depends on user’s decision

and on the input layer.

– variogram settings. The type of univariate or bivariate function belongs to the

most important options here. This influences choice of variogram type and other

parameters (coefficients of the function, number and size of lags and maximum

distances). All these parameters are just optional, because the default values are

derived later.

– outputs with additional information about the interpolated data:

∗ variogram plot in Gnuplot window or in various file formats,

∗ report file with statistical tests of output data,

∗ cross validation results that include differences of original and interpolated

values located on the input points.

• parameters of the region are obtained. This is necessary for defining output (2D or

3D) raster extent and resolution and also for filtering points outside the region.

• coordinates of input points within the region are obtained.

• values to be interpolated are obtained from attribute table of vector layer. The

function to get values from database is based on part of the module v.buffer2 (GRASS

Development Team, 2014).

• variogram restrictions are computed (maximum distance of variogram computation,

size and number of lags). The user may set up also his/her own variogram settings,

but at least on first performance of the interpolation, it is convenient to use the default

settings.

• experimental variogram is estimated. The computation depends on required vario-

gram function – bivariate function is based on Eq. 3.6 and univariate function of any

type uses in general Eq. 3.5.

• anisotropy computation is based on empirical estimation of variogram ranges in ho-

rizontal and vertical direction. In case that sills in both directions are different, also

zonal anisotropy must be considered.
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• theoretical variogram based on the experimental variogram is estimated. There are

several types of functions available to model theoretical variogram.

• unknown values are estimated using the method of ordinary kriging and cross vali-

dation is performed optionally. The values located on the input points are interpolated

using modelled variogram and compared with original values.

In special case that all the values located on input points are the same (coefficients of

linear functions are equal to zero), constant 2D or 3D raster is created.

4.1.2 Case studies

To verify the results of v.krigingseveral datasets have been used:

• synthetic data. Testing of the data based on exact mathematical formulae (normal

gravity) should not be influenced by error of measurement, physical properties of the

environment and by other random factors.

• the data acquired in real world that describe the phenomenon including its random

nuances. In this thesis, soil moisture data (White, 2002) and space-time cube that

represents terrain evolution (Mitášová, 2014) in time were used.

Each case study is based on very similar methodology. Horizontal and vertical experi-

mental variogram were computed to estimate the range, which shows geometrical anisotropy,

and the sill that may indicate zonal anisotropy. In this experiment, both types of variogram

were computed because of comparison. Parameters of anisotropic theoretical variogram were

estimated empirically, coefficients of bivariate linear variogram were derived using method

Least Mean Squares (LMS).

Interpolation results were verified comparing cross validation results and also differences

between reference and interpolated values. Cross validation was performed on input points

– original values of normal gravity were compared with values interpolated on the same

points. Condition Eq. 3.3 should make the differences to be close to the zero (because of

data imperfection and other random errors).

Reference values to be compared with interpolation result were derived using physical

model or as results of Regularized Spline with Tension interpolation (by v.vol.rst (Mitáš

et al., 2014)). The differences between 3D rasters were obtained using the module r3.mapcalc

(GRASS Development Team, 2014) and statistical characteristics were compared.

Normal gravity The values were derived using physical model according to (Hoffmann-

Wellenhof and Moritz, 2006). Parabolic curve of experimental variogram in vertical direction

indicated trend in the data that was eliminated before interpolation using kriging method.

Following polynomial expression seems to be the most appropriate:

w = a · x+ b · z + c · x · y · z + d · x · y + e · x · z + f · y · z + g (4.1)

9



where x, y, z are coordinates of the points and w means the values located on these points. In

Fig. 4.1 and Fig. 4.2, there might be seen experimental and theoretical variograms computed

for residuals in horizontal and vertical direction. The variogram in vertical direction (Fig. 4.2)

may still indicate some trend, as it rises even after reaching the sill.

Obr. 4.1: Normal gravity (after eliminating trend) – horizontal variogram

Obr. 4.2: Normal gravity (after eliminating trend) – vertical variogram

The difference between sills in horizontal and vertical direction indicates also zonal ani-

sotropy.
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Obr. 4.3: Normal gravity (after eliminating trend) – anisotropic variogram

Obr. 4.4: Normal gravity (after eliminating trend) – bivariate variogram

According to statistical characteristics of cross validation results, Gaussian variogram

(Fig. 4.3) seems to be the most appropriate to model this dataset. Although bivariate vario-

gram (Fig. 4.4) was expected to fit the data better, linear function is not the most appropriate

to model this dataset. It generates negative values of squared dissimilarities located on the

pairs of the points and also the plane does not respect curvature of the experimental bivariate

variogram very well.

Comparison of reference and interpolated values indicates that spherical variogram could

be the most appropriate for modelling this dataset. As the range of theoretical variogram is

quite small, there are no significant differences in shape of the Gaussian and spherical curve

while it reaches the sill sharply.

In Fig. 4.5, there can be seen 3D raster interpolated using kriging with Gaussian va-

riogram as function of distance in three-dimensional space, where horizontal and vertical

direction are anisotropic. The values are visualized using almost parallel isosurfaces – they
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represent equipotential planes that are in fact sections of ellipsoids.

The differences between values obtained using physical model and values interpolated

using Gaussian variogram in Fig. 4.6 show some systematic error in the result.

Obr. 4.5: Normal gravity (kriging based on Gaussian variogram)

Obr. 4.6: Normal gravity (differences between physical model and kriging)

The difference between real and interpolated values (based on Gaussian variogram) is less

than 1.5 mGal (in absolute value) – original values vary around 980 702 mGal. In Fig. 4.6

might be seen that the errors are not distributed randomly. In northern part of the study

area, interpolated values have wider range than original dataset. This trend might be caused

by coordinate transformation (normal gravity was computed for ellipsoidal coordinates in

ETRS89 and then the points were transformed to S-JTSK) or there might be also some

residual trend.

Space-time cube (Mitášová, 2014) represents terrain evolution in time. As vertical co-

ordinate, we consider time t in this case3, and values of z coordinate were interpolated as

function of horizontal coordinates and time z = f(x, y, t).

As sill of horizontal and vertical variogram indicates (Fig. 4.7, 4.8), bivariate variogram

should be more appropriate to model dissimilarities in this dataset. There may be also some

trend in the data, because horizontal variogram rises quite regularly after reaching the sill.

Anyway, curve of this experimental variogram seems to be not too regular as in case of

normal gravity, so for this experiment we did not eliminate trend.

3One unit of vertical axis represents 100 days
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Obr. 4.7: Space–time cube – horizontal variogram

Obr. 4.8: Space–time cube – vertical variogram

Another tricky phenomenon is represented in Fig. 4.8. As the values of elevation have

been acquired in within constant time intervals and the sample is quite thin (just three

levels), there is only one vertical lag with real value. In this case, we tested just setting up

range to make the curve of theoretical variogram fit the only value of experimental variogram.

Comparing cross validation results and differences between RST and kriging, exponential

variogram (Fig. 4.9) was assumed to be optimal for this dataset. Bivariate variogram seems

to be not appropriate to model this dataset. This may be caused by too sparse configuration

of points along vertical axis and also constant step might spoil the result, despite of the

function that fits experimental variogram quite well (Fig. 4.10).
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Obr. 4.9: Space–time cube – anisotropic exponential variogram

The results of RST seem to be smoother than results of kriging and also than input

values – this is visible also on horizontal slices. This may depend on settings of tension and

smoothing of spline function in RST method. Parameters of RST function have been chosen

according to (Mitášová, 2014).

Obr. 4.10: Space–time cube – bivariate variogram
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Obr. 4.11: Space-time cube (kriging based on exponential variogram)

Obr. 4.12: Space-time cube (Regularized Spline with Tension)

Obr. 4.13: Space-time cube (differences between RST and kriging)

The differences are quite high – does not matter about variogram function, but comparing

with statistical characteristics of input data it might be assumed that the result of RST

interpolation is smoother than original values. This is visible also in Fig. 4.11 and 4.12.

Soil moisture data (White, 2002) consist of time domain reflectometry (TDR) readings

of volumetric soil moisture (in %) located on coordinates x, y and depth. Horizontal and

vertical variogram (see Fig. 4.14, 4.15) indicate that there is no zonal anisotropy in this

dataset.
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Obr. 4.14: Soil moisture – horizontal variogram

Obr. 4.15: Soil moisture – vertical variogram

It is correct then to model the dissimilarities using just anisotropic variogram (Fig. 4.16),

but experimentally also bivariate variogram (Fig. 4.17) was computed.
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Obr. 4.16: Soil moisture – anisotropic variogram

Obr. 4.17: Soil moisture – bivariate variogram

According to statistical characteristics of cross validation, Gaussian variogram (see Fig. 4.16)

seems to be the most appropriate to model this dataset. On the other side, bivariate vario-

gram (Fig. 4.17) causes extremely high values of differences between original and interpolated

values. Linear bivariate function fits experimental variogram quite well (even better com-

paring with function in Fig. 4.4). The reason why interpolated values are so incorrect may

be spatial variability of input values. Soil moisture is much more variable phenomenon than

normal gravity and it probably requires different approach (maybe segmentation of study

area for variogram modelling purposes).

Again, comparing differences of interpolation methods, Gaussian variogram (Fig. 4.18)

seem to generate very close values to the results of RST (Fig. 4.19). Exponential and sphe-

rical function are probably too steep to model this dataset. In Fig. 4.20 might be seen
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that the highest values are grouped in surrounding of points that are characterised by value

significantly different comparing with other values in neighbourhood.

Obr. 4.18: Soil moisture (kriging based on Gaussian variogram)

Obr. 4.19: Soil moisture (Regularized Spline with Tension)

Obr. 4.20: Soil moisture (differences between RST and kriging)

Comparison with RST shows that Gaussian function generates too smooth values – soil

moisture is quite variable and it is distributed in space quite randomly. Spline functions are

able to better fit values that are changing quite steeply.

4.2 Nearest Neighbour Analysis

The purpose of this experiment is to outline the way how to implement Nearest Neighbour

Analysis in three-dimensional space into the GIS environment.

4.2.1 Module v.nnstat in GRASS GIS

The module contains functionality of NNA in two-dimensional space (implemented also

in the analytical tool (ESRI, 2013b) of ArcGIS (ESRI, 2013a)) and solution for objects

in three-dimensional space. The most significant complications during development were

connected with determining of Minimum Bounding Box (MBB). MBB determines the density
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of points in three-dimensional space (or the volume may be set up by the user). Methods

how area (volume) of MBR (MBB) can be determined are principally quite similar:

– Coordinates of convex hull must be obtain. In 3D case it is necessary to know also

reference of each vertex to the faces. Partially modified functions of the module v.hull

(GRASS Development Team, 2014) that enables to build convex hull in new vector

layer were used.

– The coordinates of vertices must be transformed to coordinate systems, which x axes

are parallel to lines between neighbouring vertices in 2D case. In 3D case, their xy

planes are parallel to planes of faces of the convex hull.

– Extent of transformed coordinates should be determined,

– Area / volume of the extent must be counted and the values should be compared to

obtain the smallest one. This value becomes input in determining the density of points.

4.2.2 Case studies

For points located in two-dimensional space, the module was tested comparing numerical

results with outputs of the analytical tool in ArcGIS 10.1 (ESRI, 2013a), Average Nearest

Neighbor (ESRI, 2013b). 3D variant of NNA is not implemented in any of accessible soft-

wares, numerical results were verified comparing them with values computed by scripts in

the software Mathematica (Wolfram Research, Inc., 2008) and Matlab (MathWorks, Inc.,

2010).

The module was tested on various sets of synthetic data. Configuration of observed

points in the area of interest 20 km x 20 km was designed to represent all possible cases:

randomly distributed points, separated points and clustered points. The samples of randomly

distributed points were generated in the software GRASS GIS (GRASS Development Team,

2014) using the module v.random (GRASS Development Team, 2014). Except numerical

accuracy, process speed was tested too. Here is an example (Tab. 4.2.1) from testing:

n = 5000

v.nnstat Average Nearest Neighbor (ESRI, 2013b) difference

rA[m] 140.981861 140.981861 0.000 mm

rE [m] 141.307761 141.307761 0.000 mm

R 0.997694 0.997694 0.000000

c -0.311984 -0.311986 -0.000002

A[m2] 399357668.904297 399357668.904439 142 mm2

t[s] 0.324 5

Tabul’ka 4.2.1: Test of v.nnstat in 2D space – 5000 randomly distributed points

According to the test statistic c ∈ (−1.96; 1.96), it can be assumed that in both cases the

points were randomly distributed. Differences in the values of MBR area may be caused by
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the different way of storing data in computer memory, as the results of other experiments

show.

Nowadays, there is no accessible tool for process NNA in three-dimensional space, so it

is not possible to compare the results of the module with outputs of any verified software.

That is the reason to control the results using parts of code scripted in mathematical soft-

ware Mathematica (Wolfram Research, Inc., 2008) or Matlab (MathWorks, Inc., 2010). Just

results of volume of Minimum Bounding Box (MBB) were verified.

4.3 Optimization methods

This chapter is based on the article (Stopková, 2014). Simple tasks of searching points are

often quite compute intensive and time-consuming, especially for large datasets. That is the

reason why spatial index for three-dimensional data (kd-tree) implemented in PCL library

(Rusu and Cousins, 2011) was tested.

4.3.1 Spatial indexing

The nearest neighbour of observed point can be simply found computing all the distances

between all the pairs of the points, but this way is too inefficient. If the sample contains

n points, computation of all the distances means 0.5 · n · (n− 1) operations. Moreover, if

it is necessary to interpolate unknown values in 3D raster of (nx · ny · nz) cells, where nx

means number of columns, ny means number of rows and nz means number of depths (or

vertical levels), number of operations during search of the relevant surrounding will increase

to n · (nx · ny · nz) because of need to compute distance of reference point of each cell to

all the input points. Spatial indexing (Rusu and Cousins, 2011) was used to improve these

tasks:

• nearest neighbour search for computing average minimum distance between po-

ints in Nearest Neighbour Analysis (PCL function nearestKsearch)

• search of points within relevant distance to observed point for variogram

modelling (PCL function radiusSearch following additional conditions because of ani-

sotropy)

• estimate optimal lag distance (PCL function nearestKSearch with k equal to

5% of total number of the points)

These functions return vector of indices of the nearest neighbour(s) and also vector of

squared distances between point pairs. However, these distances may be not useful in next

steps, because PCL library (Rusu and Cousins, 2011) uses float precision only (PCL Users

mailing list, 2012). Because of accuracy of results it is better to use just vector of indexes to

select relevant coordinates of original points.
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γ (h,∆z) = a ·∆z2 + b · h2 + c a b c

without kd-tree 0.043714 0.000020 -387.254400

with kd-tree 0.043301 0.000026 -499.359364

Tabul’ka 4.3.1: Theoretical variogram coefficients

4.3.2 Case studies

Both of the modules were tested comparing the results of version with and without using

kd-tree. The most interesting results have been obtained in comparing results and processing

time in Nearest Neighbour Analysis of the sample of 211 631 points of gravity mapping

(Kubeš et al., 2001). Module v.nnstat was tested on computer with parameters as follows:

Processor: Intel(R) Core(TM) i5 CPU, 2.80 GHz, 4 cores

Memory: 4.00 GB

Operation system: Ubuntu 12.04

With acceleration of processing time from 16 to 9.5 minutes, spatial index kd-tree seems

to be really useful. Anyway, this module needs to speed up processing of Minimum Bounding

Box searching.

To test the module v.kriging, interpolation was performed on input points with normal

gravity γ. This sample of points was selected from gravity mapping (Kubeš et al., 2001).

In statistical characteristics of interpolated normal gravity values, there were noticeable

numerical differences. We suppose that they were caused by experimental variogram γ (h,∆z)

that was determined using sample of points selected by kd-tree due to distance between pairs

of points. This sample was probably slightly different of the sample from selection in original

module because of precision (float vs. double). This changed also coefficients of theoretical

variogram (see Tab. 4.3.1). Variable of h means horizontal distance and ∆z means vertical

distance between pairs of points. It is not correct to use parabolic variogram, but this was

older version of the module tested. Actual version used spatial indexes.

Spatial index in v.kriging is helpful just in case of larger samples of points. If the sample

is too small, then interpolation should be performed without spatial index – as it is necessary

to create new spatial index for each output point, it slows down the process. In other parts

of kriging, e.g. variogram modelling or estimation of optimal lag distance, spatial index is

quite helpful.
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Conclusion

The development of analytical tools for 3D GIS included summation or extension of

theoretical background of selected spatial analyses in three-dimensional space, finding

optimal way how to implement these principles, making case studies to verify the results.

The main contribution of this thesis are two modules:

• v.kriging that provides functionality to interpolate data using geostatistical approach.

The module implements univariate anisotropic variogram and bivariate variogram (alt-

hough this needs additional research). Interpolation using kriging may be alternative

to the methods that have been implemented in GIS already (e.g. Regularized Spline

with Tension in module v.vol.rst (Mitáš et al., 2014)). Variogram modelling is useful

not just for interpolation but also as information about spatial dependencies between

the data.

• v.nnstat that helps to assume if the points are distributed in three-dimensional space

randomly, in clusters or in patterns. The module provides two-dimensional functionality

that may be found e.g. in analytical tool Average Nearest Neighbour in ArcGIS (ESRI,

2013a). More important is three-dimensional functionality that has been described, but

not implemented in GIS before. For purposes of GIS usage, computation of standard

deviation in three-dimensional space was derived.

The modules are integrated in open-source GRASS GIS (GRASS Development Team,

2014) to be free and accessible to anybody in the world to use, modify or extend if neces-

sary. As modules of well-known open-source software that is used by (not only) scientific

communities all over the world, they have a chance to be used more often as if they were

part of some not very commonly used software. They may be also starting point for other

research – this probably will not be possible if the modules were part of proprietary software.

Résumé

Dizertačná práca poskytuje prehl’ad súčasného stavu 3D GIS s dôrazom na teoretické prinćıpy

a praktické aplikácie vybraných 3D priestorových analýz. Hlavným ciel’om bolo vytvorit’

analytické nástroje na prácu s trojrozmernými dátami – moduly pre open-source softvér

GRASS GIS (GRASS Development Team, 2014).

Modul v.kriging umožňuje interpolovat’ dáta na základe modelovania zmien ich hodnôt

pomocou 3D variogramu, ktorý môže byt’ funkciou anizotropnej trojrozmernej vzdialenosti

alebo horizontálnej vzdialenosti a prevýšenia. Modul v.nnstat predstavuje nástroj priesto-

rovej štatistiky na posúdenie, či sú body v danej vzorke usporiadané náhodne, v zhlukoch

alebo v pravidelnej vzorke.

Oba moduly boli testované s použit́ım syntetických aj reálnych dát a boli navrhnuté

možnosti optimalizácie ich výkonu.
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